论文部分内容阅读
运用构造法解题可以使代数、三角、几何等数学知识互相渗透,便于完成矛盾转化、问题的解决,同时对培养学生的类比、联想、创新意识和创新能力有独到的功效.构造法的实质是依据某些数学问题的条件或结论所具有的典型特征,用已知条件中的元素为“元件”,用已知的数学关系为“支架”,构造出满足条件的数学对象,使原问题中隐晦不清的关系或性质在新构造的数学对象中清晰地展现出来,从而使问题转化并得到有效解决.用构造法解题,常在“山重水复疑无路”时,“柳暗花明又一村”.