论文部分内容阅读
稀疏表示分类算法在有监督的图像识别上有广泛的应用.该分类算法的准确度与训练样本个数有很大的关联.通常训练样本越充分,则该算法分类准确率越高,然而遇到小样本问题时,该算法分类准确率会明显降低.针对小样本问题,提出使用基于图像边缘位移的方法,得到和原始训练图像样本高度相关的新样本,达到扩充训练样本容量的目的,进而提高算法的分类准确率.同时,对于带仿射约束的稀疏表示分类算法,也可以经过图像边缘位移方法来提高分类准确率.实验结果证明,所用方法能够取得较好的图像识别效果.