论文部分内容阅读
摘要:采用水热合成的方法在不同溶剂条件下制备了BiOBr粉末半导体材料,并应用扫描电镜(SEM)和能谱分析(EDS)对BiOBr粉末的形貌组成进行表征,通过降解甲基橙染料来考察样品的光催化性能。结果表明,与水溶剂相比,在硝酸为溶剂下制备BiOBr片状结构尺寸更小,且其在pH=2且加入硫酸钠电解质条件下降解效果较好。
关键词:光催化 降解 甲基橙 BiOBr 水热合成
近年来,随着工业的快速发展,水环境中有毒物、致癌物污染物的大量排放,严重地威胁着人类的健康。半导体光催化氧化技术以其众多的优点受到了人们的青睐[1,2],但是,由于光催化技术的反应体系较为复杂,目前的光催化技术还基本停留在实验室研究的层面上,其中最为突出的问题是光催化剂的光量子效率低,对光的响应范围狭窄,催化能效率低,催化剂不稳定等,因此光催化剂的制备及改性一直是国内外研究的热点[1-5]。BiOX(Cl、Br、I)是一类新型的半导体材料[3-5],具有独特的电子结构、良好的光学性质和较高的催化活性,且随着卤素原子序数的增加,其光吸收和光催化性能均呈规律性变化,近年来引起了研究人员的兴趣。本实验通过水热合成法制备了BiOBr光催化剂并对其进行表征,考察了不同溶剂下制备BiOBr光催化剂的形貌组成;以甲基橙为目标降解物,考察了不同pH值以及硫酸钠电解质的加入对BiOBr光催化降解性能的影响。
一、实验方法
1.催化剂的制备
二、光催化实验
三、结果与讨论
1.样品表征
2.光催化降解
采用硝酸为溶剂制备的BiOBr粉末为光催化剂,紫外可见光下催化降解甲基橙。溶液初始pH值对光催化降解动力学的影响如图2所示。由图可见,pH值对催化剂的光催化活性具有显著影响,pH=2时,甲基橙具有最好的催化降解效果,降解率达到了74%;pH=7时,降解率为52%;pH=9时,降解率只有21%,随着pH值的升高,催化剂的光催化活性逐渐降低。
四、结论
通过水热合成法制备产物,研究表明不同的水热条件(溶剂)对产物的表面形貌产生了显著的影响,以硝酸为溶剂条件下制备的片状粉末颗粒更小。通过对BiOBr催化降解甲基橙的多组实验数据进行研究分析,可知pH为2、加入硫酸钠电解质条件下降解效果最好。
参考文献
[1] Fujishima A, Honda K.. Nature.1972, 238(5358):23&37-38.
[2] Zhichao Shan, Wendeng Wang, Xinping Lin. Journal of Solid State Chenistry. 2008 (181):1361-1366.
[3] 张喜,华中师范大学博士学位论文,2010年。
[4] An Huizhong, Du Yi, Wang Tianmin. 2008,27,3:243.
[5] Sanaa Shenawi-Khalil, Vladimir Uvarou, Yulia Kritsman.. Catalysis Communications. 2011, 12:1136-1141.
关键词:光催化 降解 甲基橙 BiOBr 水热合成
近年来,随着工业的快速发展,水环境中有毒物、致癌物污染物的大量排放,严重地威胁着人类的健康。半导体光催化氧化技术以其众多的优点受到了人们的青睐[1,2],但是,由于光催化技术的反应体系较为复杂,目前的光催化技术还基本停留在实验室研究的层面上,其中最为突出的问题是光催化剂的光量子效率低,对光的响应范围狭窄,催化能效率低,催化剂不稳定等,因此光催化剂的制备及改性一直是国内外研究的热点[1-5]。BiOX(Cl、Br、I)是一类新型的半导体材料[3-5],具有独特的电子结构、良好的光学性质和较高的催化活性,且随着卤素原子序数的增加,其光吸收和光催化性能均呈规律性变化,近年来引起了研究人员的兴趣。本实验通过水热合成法制备了BiOBr光催化剂并对其进行表征,考察了不同溶剂下制备BiOBr光催化剂的形貌组成;以甲基橙为目标降解物,考察了不同pH值以及硫酸钠电解质的加入对BiOBr光催化降解性能的影响。
一、实验方法
1.催化剂的制备
二、光催化实验
三、结果与讨论
1.样品表征
2.光催化降解
采用硝酸为溶剂制备的BiOBr粉末为光催化剂,紫外可见光下催化降解甲基橙。溶液初始pH值对光催化降解动力学的影响如图2所示。由图可见,pH值对催化剂的光催化活性具有显著影响,pH=2时,甲基橙具有最好的催化降解效果,降解率达到了74%;pH=7时,降解率为52%;pH=9时,降解率只有21%,随着pH值的升高,催化剂的光催化活性逐渐降低。
四、结论
通过水热合成法制备产物,研究表明不同的水热条件(溶剂)对产物的表面形貌产生了显著的影响,以硝酸为溶剂条件下制备的片状粉末颗粒更小。通过对BiOBr催化降解甲基橙的多组实验数据进行研究分析,可知pH为2、加入硫酸钠电解质条件下降解效果最好。
参考文献
[1] Fujishima A, Honda K.. Nature.1972, 238(5358):23&37-38.
[2] Zhichao Shan, Wendeng Wang, Xinping Lin. Journal of Solid State Chenistry. 2008 (181):1361-1366.
[3] 张喜,华中师范大学博士学位论文,2010年。
[4] An Huizhong, Du Yi, Wang Tianmin. 2008,27,3:243.
[5] Sanaa Shenawi-Khalil, Vladimir Uvarou, Yulia Kritsman.. Catalysis Communications. 2011, 12:1136-1141.