论文部分内容阅读
针对短期电力负荷预测中影响因素多、变化随机、非线性等特点,提出一种相似日的优化BP神经网络短期电力负荷预测方法。考虑到短期负荷波动的影响因素较多,相似日的选取综合了气象因素、日期因素和时间距离因素。同时,在负荷预测中常用的BP神经网络预测方法的基础上,引入遗传算法对BP神经网络算法的初始权值和阈值寻优进行改进。仿真表明优化BP神经网络算法与相似日结合的方法预测时在稳定性和精确度方面得到较大的提高。