论文部分内容阅读
数学学习的核心是发展思维能力.同学们在学习的过程中,若能经常对课本的经典题进行挖掘、引申和改编,就可以得到综合性强、形式新颖的命题,这样可帮我们全面系统地掌握知识,培养思维的灵活性和发散思维能力.现举例说明.题目已知点l为△ABC的内心,延长AI交△ABC的外接圆于D,AD交BC于E,求证:DB=DI.分析连结BI,∵I为内心,∴∠ABI=∠EBI,∠BAE=∠CAD=∠EBD,而∠DIB=∠ABI+∠BAE,
The core of mathematics learning is the development of thinking ability.Students in the learning process, if we can often excavate, extend and adapt the classic textbook, you can get a comprehensive, new forms of proposition, so that we can help us a comprehensive To grasp the knowledge, develop thinking flexibility and divergent thinking ability .Examples .Examples Known point l is the center of △ ABC, extend the intersection of AI △ ABC circumcircle in D, AD 交 BC in E, verify: DB = DI. Analyze the link BI, ∵I is the center, ∴∠ABI = ∠EBI, ∠BAE = ∠CAD = ∠EBD, and ∠DIB = ∠ABI + ∠BAE,