基于深度学习的肺结节分类分割算法及其在不同CT重建算法下的效能评估

来源 :中华医学杂志 | 被引量 : 0次 | 上传用户:qq165247254
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的:构建一种基于深度学习的肺结节分类以及分割算法,探究其在不同CT重建算法下的诊断效能。方法:回顾性收集2019年6至9月天津医科大学朱宪彝纪念医院放射科363例胸部CT平扫影像学资料,每例患者的胸部CT平扫均包含三种CT重建算法(肺重建、纵隔重建、骨重建)生成的图像,这些数据构成了模型的测试集;模型的训练集由公开数据集(LIDC-IDRI)和私有数据集共4 185例患者胸部CT图像组成。模型的构建采用3D深度卷积神经网络和递归神经网络结合的方式,在多任务联合学习下训练肺结节密度类型分类和分割,最后将训练好的模型在天津医科大学朱宪彝纪念医院放射科363例测试病例上进行效果测试,得到三种CT图像重建算法下结节分类准确率和分割Dice系数指标。采用方差分析对三种CT重建算法下的结节分类准确率和分割Dice系数进行比较以分析差异是否有统计学意义。结果:在三种CT重建算法下,模型对肺结节密度类型的分类准确率分别为98.67%±5.70%、98.38%±6.61% 和97.89%±7.32%,其中实性结节的分类准确率分别为98.79%±5.58%、98.49%±6.89%和97.90%±7.41%,亚实性结节的分类准确率分别为97.57%±10.19%、98.52%±7.77%和98.52%±7.77%,三种不同重建算法下的肺结节的分类准确率差异无统计学意义(均n P>0.05)。三种重建算法下,所有结节分割的Dice系数分别为79.87%±5.78%、79.02%±6.04%和79.31%±5.95%,三组间结节分割的Dice系数差异无统计学意义(均n P>0.05)。n 结论:结合了3D卷积神经网络和递归神经网络的深度学习算法,对不同CT重建算法图像中肺结节的分类和分割均有较为稳定的效果。“,”Objective:To evaluate the diagnostic value of the lung nodule classification and segmentation algorithm based on deep learning among different CT reconstruction algorithms.Methods:Chest CT of 363 patients from June 2019 to September 2019 in Radiology Department of Tianjin Medical University Chu Hsien-I Memorial Hospital were retrospectively collected in this study, each of which consisted of images by three different reconstruction methods (lung reconstruction, mediastinal reconstruction, bone reconstruction).These collected data were used as testing set and a total of 4 185 Chest CTs including the public data set and the constructed private data set were used as the training set. A model combines 3D deep convolutional neural network and recurrent neural network under a multi-task joint learning algorithm for lung nodule classification and segmentation were constructed. The well-trained method was tested on 363 test cases using two metrics, i.e., the accuracy of the density classification and the Dice coefficient of nodule segmentation. The performances under three reconstruction methods were statistically analyzed according to the variance analysis among three different reconstruction methods.Results:The average classification accuracies of the nodule under three reconstruction methods were 98.67%±5.70%, 98.38%±6.61% and 97.89%±7.32%. Specifically, the accuracies of the solid nodules under three reconstruction methods were 98.79%±5.58%, 98.49%±6.89% and 97.90%±7.41% and the accuracies of the sub-solid nodules were 97.57%±10.19%, 98.52%±7.77% and 98.52%±7.77%. There was no significant difference in the classification accuracy of pulmonary nodules under three different reconstruction algorithms (all n P>0.05). The average Dice coefficients of nodule segmentation was 79.87%±5.78%, 79.02%±6.04% and 79.31%±5.95%. There was no significant difference in the average Dice coefficients of nodule segmentation under three different reconstruction algorithms (alln P>0.05).n Conclusion:Deep learning algorithm which combined with 3D convolutional neural network and recurrent neural network has demonstrated relatively stable in classification and segmentation of lung nodules under different CT reconstruction method.
其他文献
由工信部支持,中国机械工业联合会主办的“2010中国节能机电产品(设备)展览会”将于2010年10月19—21日在中国国际展览中心举 Supported by the Ministry of Industry and I
红军与“围剿”的川军激战五天五夜,战事才稍微平静下来。红军战士们一听到宿营命令,很快就进入了梦乡。王近山也一样,他也想好好睡一觉,但作为一团之长,养成的习惯一时难以
全国13省、市共23个单位,对不锈钢金属单环、V铜200及T铜220c共6,236例对象进行了随机化临床多中心比较性研究。采用生命表统计分析方法进行评价。三年末的随访率为99.25%。
在通胀预期加强,以及加息背景下,如何布局基金投资?春节期间,中国人民银行决定,自2011年2月9日起上调金融机构人民币存贷款基准利率。金融机构一年期存贷款基准利率分别上调0
“呼噜排长”既不姓呼,也不叫噜。他真名叫黄明轩,是我们的新兵排长。只因其人打呼噜“惊天地、泣鬼神”而闻“鸣”于新兵中队。呼噜排长其貌不扬,甚至有些对不起观众。头很
本文旨在针对中职校计算机《CorelDraw平面设计与制作》教学实践展开思考,在CorelDraw的教学中,只有正确抓住中职生的心理,有目的、有计划、紧扣兴趣、基本功的教学才能充分调动