论文部分内容阅读
隧道围岩变形序列具有高度非线性,采用常规方法很难得到满意的预测精度。为了提高隧道围岩变形的预测精度,基于实测变形数据,提出一种隧道围岩变形的多尺度组合核极限学习机预测模型。首先,通过集合经验模态分解技术将实测变形数据分解为多个不同的尺度序列,然后通过组合核极限学习机对各分量序列进行建模预测,最后将预测得到的各分量结果进行组合获得最终的预测值。改进模型中通过径向基函数和多项式核函数线性加权而成组合核函数,运用粒子群算法对核参数和加权系数进行优选,并通过马尔可夫链对模型的预测结果进行了讨论,可以较好地提高隧道