论文部分内容阅读
An accurate and reasonable technique combining direct absorption spectroscopy and laser-induced fluorescence(LIF)methods is developed to quantitatively measure the concentrations of hydroxyl in CH_4/air flat laminar flame. In our approach, particular attention is paid to the linear laser-induced fluorescence and absorption processes, and experimental details as well. Through measuring the temperature, LIF signal distribution and integrated absorption, spatially absolute OH concentrations profiles are successfully resolved. These experimental results are then compared with the numerical simulation. It is proved that the good quality of the results implies that this method is suitable for calibrating the OH-PLIF measurement in a practical combustor.
An accurate and reasonable technique combining direct absorption spectroscopy and laser-induced fluorescence (LIF) methods is developed to quantitatively measure the concentrations of hydroxyl in CH_4 / air flat laminar flame. In our approach, particular attention is paid to the linear laser-induced fluorescence and absorption processes, and experimental details as well. Through measuring the temperature, LIF signal distribution and integrated absorption, spatially absolute OH concentrations profiles are successfully resolved. It is proved that the good quality of the results implies that this method is suitable for calibrating the OH-PLIF measurement in a practical combustor.