论文部分内容阅读
Ammonia volatilization losses from urea applied as a basal fertilizer and a top dressing at tillering stage in a wheat field of Taihu Region, China, were measured with a micrometeorological technique. Urea as fertilizer was surface broadcast at 81 (low N) and 135 (high N) kg N ha-1 as basal at the 3-leaf stage of the wheat seedling on December 2002, and 54 (low N) and 90 (high N) kg N ha-1 as top dressing on February 2003. Ammonia volatilization losses occurred mainly in the first week after applying N fertilizer and mainly during the period after basal fertilizer application, which accounted for more than 80% of the total ammonia volatilization over the entire wheat growth period. Regression analysis showed that ammonia volatilization was affected mainly by pH and NH4+-N concentration of the surface soil and air temperature. Ammonia volatilization flux was significantly correlated with pH and NH4+-N concentration of the surface soil and with daily air average temperature and highest temperature. Thus, a
Ammonia volatilization losses from urea applied as a basal fertilizer and a top dressing at tillering stage in a wheat field of Taihu Region, China, were measured with a micrometeorological technique. Urea as fertilizer was surface broadcast at 81 (low N) and 135 (high N) kg N ha-1 as basal at the 3-leaf stage of the wheat seedling on December 2002, and 54 (low N) and 90 (high N) kg N ha-1 as top dressing on February 2003. Ammonia volatilization losses occurred primarily in the first week after applying N fertilizer and mainly during the period after basal fertilizer application, which accounted for more than 80% of the total ammonia volatilization over the entire wheat growth period. and NH4 + -N concentration of the surface soil and air temperature. Ammonia volatilization flux was significantly correlated with pH and NH4 + -N concentration of the surface soil and with daily air average temperature and highest t Thus, a