论文部分内容阅读
The marine algal-derived endophytic fungus Aspergillus wentii EN-48 produces the potential anti-tumor agent asperolide A, a tetranorlabdane diterpenoid active against lung cancer. However, the fermentation yield of asperolide A was very low and only produced in static cultures. Static fermentation conditions of A. wentii EN-48 were optimized employing response surface methodology to enhance the production of asperolide A. The optimized conditions resulted in a 13.9-fold yield enhancement, which matched the predicted value, and the optimized conditions were successfully used in scale-up fermentation for the production of asperolide A. Exogenous addition of plant hormones(especially 10 μmol/L methyl jasmonate) stimulated asperolide A production. To our knowledge, this is first optimized production of an asperolide by a marine-derived fungus. The optimization is effective and valuable to supply material for further anti-tumor mechanism studies and preclinical evaluation of asperolide A and other norditerpenoids.
The marine algal-derived endophytic fungus Aspergillus wentii EN-48 produces the potential anti-tumor agent as perolide A, a tetranorlabdane diterpenoid active against lung cancer. However, the fermentation yield of asperolide A was very low and only produced in static cultures. conditions of A. wentii EN-48 were optimized employing response surface methodology to enhance the production of asperolide A. The optimized conditions resulted in a 13.9-fold yield enhancement, which matched the predicted value, and the optimized conditions were successfully used in scale- up fermentation for the production of asperolide A. Exogenous addition of plant hormones (especially 10 μmol / L methyl jasmonate) stimulated asperolide A production. To our knowledge, this is first optimized production of an asperolide by a marine-derived fungus. The optimization is effective and valuable to supply material for further anti-tumor mechanism studies and preclinical evaluation of asperolide A a nd other norditerpenoids.