论文部分内容阅读
Diabetic cardiomyopathy is a disease process in which diabetes produces a direct and continuous myocardial insult even in the absence of ischemic, hypertensive or valvular disease. The β-blocking agents bisoprolol, carvedilol and metoprolol have been shown in large-scale randomized controlled trials to reduce heart failure mortality. In this review, we summarize the results of our studies investigating the effects of β-blocking agents on cardiac function and metabolism in diabetic heart failure, and the complex inter-related mechanisms involved. Metoprolol inhibits fatty acid oxidation at the mitochondrial level but does not prevent lipotoxicity; its benefi cial effects are more likely to be due to prosurvival effects of chronic treatment. These studies have expanded our understanding of the range of effects produced by β-adrenergic blockade and showhow interconnected the signaling pathways of function and metabolism are in the heart. Although our initial hypothesis that inhibition of fatty acid oxidation would be a key mechanism of action was disproved, unexpected results led us to some intriguing regulatory mechanisms of cardiac metabolism. The fi rst was upstream stimulatory factor-2-mediated repression of transcriptional master regulator PGC-1α, most likely occurring as a consequence of the improved function; it is unclear whether this effect is unique to β-blockers, although repression of carnitine palmitoyltransferase (CPT)-1 has not been reported with other drugs which improve function. The second was the identif ication of a range of covalent modifications which can regulate CPT-1 directly, mediated by a signalome at the level of the mitochondria. We also identif ied an important interaction between β-adrenergic signaling and caveolins, which may be a key mechanism of action of β-adrenergic blockade. Our experience with this labyrinthine signaling web illustrates that initial hypotheses and anticipat-ed directions do not have to be right in order to open up meaningful directions or reveal new information.
Diabetic cardiomyopathy is a disease process in which diabetes produces a direct and continuous myocardial insult even in the absence of ischemic, hypertensive or valvular disease. The β-blocking agents bisoprolol, carvedilol and metoprolol have been shown in large-scale randomized controlled trials to reduce heart failure mortality. In this review, we summarize the results of our studies investigating the effects of β-blocking agents on cardiac function and metabolism in diabetic heart failure, and the complex inter-related mechanisms involved. Metoprolol inhibits fatty acid oxidation at the mitochondrial its beneficial effects are more likely to be due to the range of effects produced by β-adrenergic blockade and showhow interconnected the signaling pathways of function and metabolism are in the heart. Although our initial hypothesis that inhibition of fatty acid oxidation would be a key mechanism of action was disproved, unexpected results led us to some intriguing regulatory mechanisms of cardiac metabolism. The fi rst was upstream stimulatory factor-2-mediated repression of transcriptional master regulator PGC-1α, most likely occurring as a consequence of the improved function; it is unclear whether this effect is unique to β-blockers, although repression of carnitine palmitoyltransferase (CPT) -1 has not been reported with other drugs which improve function. The second was the identification of a range of covalent modifications which can regulate CPT-1 directly, mediated by a signalome at the level of the mitochondria. We also identified an important interaction between β-adrenergic signaling and caveolins, which may be a key mechanism of action of β-adrenergic blockade. Our experience with this labyrinthine signaling web illustrate that initial hypotheses and anticipat-ed directions do not have to be right in order to o pen upmeaningful directions or reveal new information.