论文部分内容阅读
Tungsten films growing on copper substrates were fabricated by metallorganic chemical vapor deposition (MOCVD). The chemi-cal purity, crystallographic phase, cross-sectional texture, and resistivity of the deposited films both before and after annealing treatment were investigated by X-ray energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), scanning electron microscopy (SEM), and four-point probe method. It is found that the films deposited at 460°C are metastable β-W with (211) orientation and can change into α-W when an-nealed in high-purity hydrogen atmosphere at high temperature. There are small amounts of C and O in the films, and the W content of the films increases with increasing deposition temperature and also goes up after annealing in high-purity hydrogen atmosphere. The films have columnar microstructures and the texture evolution during their growth on copper substrates can be divided into three stages. The resistivity of the as-deposited films is in the range of 87-104 μΩ·cm, and low resistivity is obtained after annealing in high-purity hydrogen atmosphere.
Tungsten films growing on copper substrates were fabricated by metallorganic chemical vapor deposition (MOCVD). The chemi-cal purity, crystallographic phase, cross-sectional texture, and resistivity of the deposited films both before and after annealing treatment were investigated by X-ray energy It is found that the films deposited at 460 ° C are metastable β-W with (211) orientation (EDS), X-ray diffraction and can change into α-W when an-nealed in high-purity hydrogen atmosphere at high temperature. There are small amounts of C and O in the films, and the W content of the films increases with increasing deposition temperature and also goes up after The films have columnar microstructures and the texture evolution during their growth on copper substrates can be divided into three stages. The resistivity of the as-deposited films is in the rang e of 87-104 μΩ · cm, and low resistivity is obtained after annealing in high-purity hydrogen atmosphere.