论文部分内容阅读
A recent experimental Kα transmission spectrum of an aluminum plasma is theoretically studied by a detailed level accounting model. It is found that the orbital relaxation effects of the K- and L-shell orbitals should be considered to calculate accurate line positions and strengths. To do this the initial and the final radial wavefunctions of Ka lines are respectively optirrdzed by solving the full relativistic Dirac-Fock equation. Extensive configuration interaction calculations are performed to obtain the energy levels and the oscillator strengths. It is shown that both the line positions and the line strengths agree quite well with experiment when the orbital relaxations are considered.