论文部分内容阅读
粒子群优化算法存在易陷入局部最优、收敛精度低、进化后期收敛慢等问题,混沌粒子群优化算法利用混沌运动的遍历性、随机性、规律性特点,很好地解决了粒子群优化算法陷入局部最优的问题,但混沌初始化会破坏已收敛的种群结构。在混沌粒子群优化算法的基础上,提出了一种混沌变参数粒子群优化算法。对陷入局部最优的种群进行混沌初始化,并采取一定的规则动态改变混沌运动的控制参数,以增强或减弱混沌方程的混沌特性,既可以减轻混沌初始化对已收敛种群结构的破坏性,又能利用混沌特性摆脱种群陷入局部最优问题,提高收敛精度,从而提高算法的全局寻