论文部分内容阅读
Objective: To investigate the role of tissue factor (TF) in chemotherapeutic reagent - induced apoptosis on human glioblastoma and explore its mechanism. Methods: The expression of TF was examined by Weste blotting. The cytotoxicity of doxorubicin was determined by WST assay. The activation of Caspase-3 and PARP induced by adoxorubicin were tested by Weste blotting. Results: Human glioblastoma ceil line U373MG expressed high level of TF while LN-229was with low-TF level. The chemotherapeutic reagent doxorubicin revealed stronger cytotoxic effect on high-TF U373MGcells than low-TF LN-229 cells. Enforced strong expression of TF was achieved by transfection of TF-pcDNA3 combinant on LN-229 cells in a dose-dependent manner. Enforced TF expression in transfected LN-229 cells not only impaired the doxorubicin-induced cleavage of Caspase-3 and PARP, but also inhibited the cytotoxic effect of doxorubicin. Furthermore,activation of Akt was strong in high-TF U373MG cells but weak in low-TF LN-229 cells. Incubation of factor Ⅶ (FⅦ) with enforced TF-expressing LN-229 cells increased the phosphorylation of Akt in a time-dependent manner. Conclusion: These results suggest that over-expression of TF on glioblastoma could inhibit doxorubicin-induced apoptosis. Interaction of FⅦand TF activates the downstream PI3K/Akt pathway. Tumor-derived over-expression of TF might play a role in chemotherapy resistance in glioblastoma, at lest in part, by activating PI3K/Akt-mediated survival and anti-apoptotic mechanism through theinteraction of TF/FⅦ signaling.