【摘 要】
:
Brain-inspired computing refers to computational models,methods,and systems,that are mainly inspired by the processing mode or structure of brain.A recent study
【机 构】
:
the Department of Computer Science and Technology
【出 处】
:
清华大学学报:自然科学版(英文版)
【基金项目】
:
partly supported by the National Natural Science Foundation of China(Nos.62072266 and 62050340),Beijing Academy of Artificial Intelligence(No.BAAI2019ZD0403)。
论文部分内容阅读
Brain-inspired computing refers to computational models,methods,and systems,that are mainly inspired by the processing mode or structure of brain.A recent study proposed the concept of“neuromorphic completeness”and the corresponding system hierarchy,which is helpful to determine the capability boundary of brain-inspired computing system and to judge whether hardware and software of brain-inspired computing are compatible with each other.As a position paper,this article analyzes the existing brain-inspired chips\'design characteristics and the current so-called“general purpose”application development frameworks for brain-inspired computing,as well as introduces the background and the potential of this proposal.Further,some key features of this concept are presented through the comparison with the Turing completeness and approximate computation,and the analyses of the relationship with“general-purpose”brain-inspired computing systems(it means that computing systems can support all computable applications).In the end,a promising technical approach to realize such computing systems is introduced,as well as the on-going research and the work foundation.We believe that this work is conducive to the design of extensible neuromorphic complete hardware-primitives and the corresponding chips.On this basis,it is expected to gradually realize“general purpose”brain-inspired computing system,in order to take into account the functionality completeness and application efficiency.
其他文献
为了获得容器内液体的晃动特性,采用数值模拟方法对正弦激励下矩形容器的晃动过程进行研究。通过用户自定义函数实现速度的加载,给定容器的刚体运动,通过计算结果与实验数据的对比验证数值方法的准确性;探究不同激励对矩形容器壁面受力及液面变化作用机制,揭示外部激励频率、激励幅值对液体晃动特性的影响规律。结果表明:一般情况下,液体晃动频率接近于外界激励频率,而当激励频率超过液体固有频率时,晃动频率会小于激励频率;液体晃动频率与外界激励幅值无关,晃动幅度随激励幅值的增大而增大;使外界激励频率远离液体固有频率,可有效抑制液
This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It consists of three sub-problems,i.e.,job as
以香菇菌丝体多糖含量及其生物合成相关酶的活性为研究指标,采用单因素实验和正交实验确定液体发酵的最佳条件,优化香菇菌丝体的培养工艺,找到控制菌丝体多糖生物合成代谢的关键酶。结果表明:香菇菌丝体最适碳源为40 g/L葡萄糖,最适氮源为10 g/L牛肉膏,最适发酵时间为5 d,最适pH值和培养温度为7和25℃。同时在不同发酵条件下培养香菇菌丝体,胞内葡萄糖激酶(GK)、磷酸葡萄糖变位酶(PGM)、UDP-葡萄糖焦磷酸化酶(UGP)、磷酸葡萄糖异构酶(PGI)和UDP-葡萄糖脱氢酶(UGD)活性随着多糖含量的增加
针对冰雹监测难和冰雹灾情不易估计的问题,结合声信号的时域、频域特点,采用时域、频域和小波域相结合的特征提取方法,将熵值法与广义回归神经网络(GRNN)相结合,提出一种基于熵值法特征筛选的GRNN降雹识别方法。对采集的降雹和降雨声信号提取时域特征、频域特征和小波包能量谱特征,采用熵值法确定各特征的权重大小,剔除权重较小的特征项并进行特征融合组成新的特征子集,将特征子集输入GRNN进行预测识别。试验结果表明,该方法能够有效识别冰雹,且特征筛选后的识别率高达97.8276%,相较未进行特征筛选的特征集,识别率提
Graph clustering,i.e.,partitioning nodes or data points into non-overlapping clusters,can be beneficial in a large varieties of computer vision and machine learning applications.However,main graph clustering schemes,such as spectral clustering,cannot be a
Recently,10 Gbps or higher speed links are being widely deployed in data centers.Novel high-speed packet I/O frameworks have emerged to keep pace with such high
大辛庄遗址位于济南市历城区大辛庄村,是山东省内已知面积最大的一处商代遗址,甲骨文及其他丰富遗存的出土对于鲁北及整个山东地区商文化研究具有重要意义.本文主要从人骨的
A Brain-Computer Interface(BCI)aims to produce a new way for people to communicate with computers.Brain signal classification is a challenging issue owing to th
Electrical power network analysis and computation play an important role in the planning and operation of the power grid,and they are modeled mathematically as
蛋白质糖基化是生物体内最重要的翻译后修饰之一,在蛋白质稳定性、细胞内和细胞间信号转导、激素活化或失活和免疫调节等生理过程和病理进程中发挥重要作用。而异常的蛋白质糖基化往往和多种疾病的发生发展密切相关,目前应用于临床检测的多种肿瘤生物标志物大多属于糖蛋白或者糖抗原。因此在组学层次系统分析蛋白质糖基化的变化对阐明生物体内糖基化修饰的调控机理和发现新型疾病标志物都非常重要。基于质谱的蛋白质组学技术为全面分析蛋白质及其修饰提供了有效的分析手段。在自下而上的蛋白质组学研究中,由于完整糖基化肽段同时存在性质各异的肽段