论文部分内容阅读
在白龙江林区沙滩、茶岗、腊子口、益哇等四个林场的人工云杉林内 ,设立了 4 5块标准地 ,对云杉落针病的发病程度及有关因子进行了调查 ,并用数量化理论Ⅰ和多元线性回归进行了相关性分析研究。发现影响该病病情指数的主要因子依次为林龄、郁闭度、密度、坡向、海拔、坡度 6个因子 ;同时建立了病情指数预测模型 : (1) ^Yi =6 194X11+ 1 4 74X12 + 2 6 6 4X2 + 0 0 0 8X3+ 4 2 0 2 4X4 + 0 0 10X5+ 0 16 7X6 -87 898; (2 ) ^Yi=3 180X1+ 2 6 4 4X2 + 0 0 0 8X3+ 4 1 875X4 + 0 0 10X5+ 0 186X6 - 78 94 1。 可根据人工云杉林的林分、立地因子调查情况 ,由模式型 (1)或 (2 )预测落针病的发生趋势。
A total of 45 standard plots were set up in the artificial spruce forest at the four forest farms of Bailongjiang forest, Chagang, Lazikou and Yiwow, and the incidence and related factors of the fallen needles of Picea koraiensis were investigated. Quantitative Theory Ⅰ and Multivariate Linear Regression Correlation Analysis. The main factors influencing the disease index were found to be 6 factors including forest age, canopy density, slope orientation, elevation, and slope. Meanwhile, the disease index prediction model was established: (1) Yi = 6 194X11 + 1474X12 + 2 6 6 4X2 + 0 0 0 8X3 + 4 2 0 2 4X4 + 0 0 10X5 + 0 16 7X6 -87 898; (2) ^ Yi = 3 180X1 + 2 6 4 4X2 + 0 0 0 8X3 + 4 1 875X4 + 0 0 10X5 + 0 186X6 - 78 94 1. According to the survey of stand and site factor of artificial spruce forest, the incidence of needle drop disease can be predicted by pattern (1) or (2).