,Recovery of saturated signal waveform acquired from high-energy particles with artificial neural ne

来源 :核技术(英文版) | 被引量 : 0次 | 上传用户:cracezhangxh
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Artificial neural networks (ANNs) are a core component of artificial intelligence and are frequently used in machine leaing. In this report, we investigate the use of ANNs to recover the saturated signals acquired in high-energy particle and nuclear physics experiments. The inherent properties of the detector and hardware imply that particles with relatively high energies probably often gen-erate saturated signals. Usually, these saturated signals are discarded during data processing, and therefore, some useful information is lost. Thus, it is worth restoring the saturated signals to their normal form. The mapping from a saturated signal waveform to a normal signal waveform constitutes a regression problem. Given that the scintillator and collection usually do not form a linear system, typical regression methods such as multi-parameter fitting are not immediately applicable. One important advantage of ANNs is their capability to process nonlinear regression problems. To recover the saturated signal, three typical ANNs were tested including backpropagation (BP), simple recurrent (Elman), and generalized radial basis function (GRBF) neural networks (NNs). They represent a basic network structure, a network structure with feedback, and a network structure with a keel function, respectively. The saturated waveforms were produced mainly by the environmental gamma in a liquid scintillation detector for the China Dark Matter Detection Experiment (CDEX). The training and test data sets consisted of 6000 and 3000 recordings of background radiation, respectively, in which saturation was simulated by truncating each waveform at 40% of the maximum signal. The results show that the GBRF-NN performed best as measured using a Chi-squared test to compare the original and reconstructed signals in the region in which saturation was simulated. A comparison of the original and reconstructed signals in this region shows that the GBRF neural network produced the best perfor-mance. This ANN demonstrates a powerful efficacy in terms of solving the saturation recovery problem. The proposed method outlines new ideas and possibilities for the recovery of saturated signals in high-energy particle and nuclear physics experiments. This study also illustrates an innovative application of machine leaing in the analysis of experimental data in particle physics.
其他文献
目的:分析和探讨CT和X线对鼻骨骨折诊断效果的比较.方法:在我院所有鼻骨骨折患者当中,随机选取66例患者作为本次研究的对象和主体,选取时间设定为2017年12月~2018年12月,将66
药敏试验工作中,需要注意到哪些问题以及具体的方法如何呢?下面,对药敏试验工作做出详细探讨.rn一 药敏试验rn药敏试验主要是对体内的环境有效模拟,对人体内的感染位置病原菌
期刊
现代都市女性工作繁忙、生活压力大,经常会忽视自身的身体健康,对一些妇科疾病的信号缺乏关注,导致一些疾病很严重后才发现,耽误治疗的最佳时期.在众多女性疾病中,妇科肿瘤是
期刊
随着信息化的发展,现代教育技术和现代化教学模式逐渐走入课堂,微课等数字化教育资源也被广泛运用在中职课堂教学上.数学教师可通过微课的形式进行课堂情境设计、学习资源开
期刊
高中数学教师在教学中不能培养只会机械记忆的学生,要培养能够有自己的创造性思维的学生.只要我们做教师的勤动脑,多思考各种教学方法,就一定能做到这点.
目的:探究心理护理和健康护理对真菌性阴道炎患者的护理.方法:以真菌性阴道炎者70例进行研究,参照组35例采用常规护理,研究组35例采用心理护理和健康护理,对比护理效果.结果:
目的:探讨手术室护理干预用于腹腔镜下结直肠肿瘤切除术患者的影响.方法:选用2018年3月-2019年3月接受治疗的80例患者作为研究对象,将患者随机分为两组,观察组采用手术室护理
三角梅又名九重葛、毛宝巾、叶子花、宝巾,为紫茉莉科叶子花属常绿灌木。三角梅3朵小花聚生在枝的中上部或顶端,下边的苞叶呈三角形,由3枚苞叶组成的“花朵”也呈三角形,故
在高中数学教学过程中,教师对学生进行教学是知识性、技巧性的教学,但这种教学在实际运用当中还需要学生自己的消化与发挥才能有效利用与完善,多数学生在自身学习过程中,只是
随着素质教育改革的不断深入发展,教学目标发生了相应的变化,在高中数学教学过程中,高中老师如何把握教学目标,做出有效教学安排,对于提升教学效果来说具有重要影响.高中数学