论文部分内容阅读
Subwavelength metal-dielectric plasmonic metasurfaces enable light management beyond the diffraction limit.However,a costeffective and reliable fabrication method for such structures remains a major challenge hindering their full exploitation.Here,we propose a simple yet powerful manufacturing route for plasmonic metasurfaces based on a bottom-up approach.The fabricated metasurfaces consist of a dense distribution of randomly oriented nanoscale scatterers composed of aluminum (Al) nanohole-disk pairs,which exhibit angle-independent scattering that is tunable across the entire visible spectrum.The macroscopic response of the metasurfaces is controlled via the properties of an isolated Al nanohole-disk pair at the nanoscale.In addition,the optical field confinement at the scatterers and their random distribution of sizes result in a strongly enhanced Raman signal that enables broadly tunable excitation using a single substrate.This unique combination of a reliable and lithography-free methodology with the use of aluminum permits the exploitation of the full potential of random plasmonic metasurfaces for diagnostics and coloration.