论文部分内容阅读
美国的一家信用卡公司,在对客户流失问题进行分析的时候,发现借助一些变量指标对客户进行分类,不同项下的指标分组下客户的流失倾向是不同的,比如同时满足A1、B1、X1条件的用户流失概率为66.7%,而满足A1、B3的客户流失率仅为5%,从而建立起了客户流失预警的内部机制,对新客户开发的资源分配也起到了重要的指导作用。同样的事情发生在中国电信业的客户保留案例中,
When analyzing the customer churn problems, a credit card company in the United States found that it is different to classify customers by means of some variable indicators. The tendency of customer churn under different indicator groups is different. For example, A1, B1 and X1 conditions Of users lost 66.7% of the probability, while the A1 and B3 to meet the customer loss rate of only 5%, thus establishing an internal mechanism of customer loss warning, resource allocation for new customers also played an important guiding role. The same thing happened in China Telecom’s customer retention case,