论文部分内容阅读
短期负荷预测是电力调度部门的重要工作之一,负荷预测的精度直接影响到电网的安全、经济和稳定运行。本文针对目前负荷预测中单一预测理论精度较低的问题提出采用BP神经网络与混沌理论相结合的算法,以变步长和附加动量法进行改进,同时以混沌时间序列来确定网络结构,从而克服了算法对大量训练样本的依赖,提高预测精度和速度。对咸阳区域电网负荷的实际预测结果表明了该方法的有效性。