Grain refinement in low SFE and particle-containing nickel aluminium bronze during severe plastic de

来源 :材料科学技术(英文版) | 被引量 : 0次 | 上传用户:kejianghaoxl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The influence of particle size and morphology on grain refinement in low stacking fault energy(SFE)alloys was studied by comparing the grain structures in single-and multi-phase Al-bronze(AB)alloys following equal channel angular pressing(ECAP)between 350 and 500℃.In particular,nickel aluminium bronze(NAB)was chosen as it contained both coarse and fine rounded particles,as well as a lamellar phase which evolved during ECAP.Grain refinement in the single-phase alloy was achieved through dynamic recrystallisation initiated at deformed twin boundaries.By contrast,different mechanisms were observed in the particle-containing NAB.Recrystallisation around the coarse κⅡ particles(~5 μm)was promoted through particle stimulated nucleation(PSN),whereas recrystallisation in the region of the fine κⅣ(~0.4μm)was delayed due to the activation of secondary slip.Grain refinement in areas of the lamellar κⅢ showed significant variation,depending on the lamellar orientation relative to the shear plane of ECAP.As the lamellae deformed,numerous high angle grain boundaries were generated between fragments and served as nucleation sites for recrystallisation,while PSN occurred around spheroidised lamellae.The spreading of the κⅢ particles by ECAP then enhanced the total area of recrystallised grains.
其他文献
This study investigates the phase transformation and microstructure of porous FeAl parts sintered from elemental powder mixtures using in-situ neutron diffraction and in-situ thermal dilatometry.A single B2 structured FeAl phase was determined in the sint
As global air pollution becomes increasingly severe,various types of fibrous filters have been devel-oped to improve air filter performance.However,fibrous filters have limitations such as high packing density that generally causes high-pressure drop and
Fibers degradation and matrix cracks are very common during fabrication of composites,which seri-ously reduces the reliability and properties of the composites.In this work,2D-Cf/ZrB2-SiC composites were fabricated by a joint processing of slurry infiltra
We demonstrate the fabrication of wearable supercapacitor electrodes.The electrodes were applied to wearable fabric by supersonically spraying the fabric with reduced graphene oxide(rGO)followed by decoration with iron oxide(Fe2O3)nanoparticles via a hydr
The worldwide outbreak of COVID-19 since December 2019 has caused great challenges to health organizations,and brought tremendous impact on the global economy.There have been over 62.3 million confirmed infection cases and 1.4 million deaths reported unti
期刊
Gradient boosting decision tree(GBDT)machine learning(ML)method was adopted for the first time to automatically recognize and conduct quantitative statistical analysis of boundaries in bainitic microstruc-ture using electron back-scatter diffraction(EBSD)
Increasing iron content has been witnessed an essential method to improve the remanence of 2:17-type Sm-Co-Fe-Cu-Zr magnets,however,the inferior squareness factor accompanied with the increased iron content turns into a neck sticking problem.In this work,
Layered lithium nickel-cobalt-manganese oxides(NCM)have been highlighted as advanced cathode materials for lithium-ion batteries(LIBs);however,their low interfacial stability must be overcome to ensure stable cycling performance of the cell.In this work,w
Na3(VO)2(PO4)2F(NVPOF)has been considered as one potential candidate for sodium-ion batteries because of its high operating voltage and theoretical capacity.However,the poor intrinsic electronic conductivity significantly restricts its widespread applicat
The controllable adjustment of electromagnetic(EM)properties for high-efficiency EM absorbents are indispensable,nonetheless,rare in crystals engineering regulation.Herein,for the first time,regulated amount of sodium citrate was employed as accessory lig