【摘 要】
:
Na3(VO)2(PO4)2F(NVPOF)has been considered as one potential candidate for sodium-ion batteries because of its high operating voltage and theoretical capacity.However,the poor intrinsic electronic conductivity significantly restricts its widespread applicat
【机 构】
:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University
论文部分内容阅读
Na3(VO)2(PO4)2F(NVPOF)has been considered as one potential candidate for sodium-ion batteries because of its high operating voltage and theoretical capacity.However,the poor intrinsic electronic conductivity significantly restricts its widespread application.In response to this drawback,we adopt the optimization strategy of tuning the morphology and structure to boost the electrical conductiv-ity and mitigate the capacity fading.In this paper,NVPOF microspheres with unique porous yolk-shell structure were fabricated via a facile one-step solvothermal method for the first time.By monitoring the morphological evolution with time-dependent experiments,the self-sacrifice and Ostwald ripening mechanism from rough spheres to yolk-shell structure was revealed.Benefited from the favorable inter-woven nanosheets shell,inner cavity and porous core structure,the resulting NVPOF electrode exhibits superior rate capability of 63 mA h g-1 at 20 C as well as outstanding long-cycling performance with the capacity retention up to 92.1%over 1000 cycles at 5 C.
其他文献
Taking advantage of the magnetic field inside transmission electron microscope(TEM),a unique Lorentz-force-actuated method for quantitative friction tests was developed via a commercial electromechanical holder.With this approach,a submicron-sized silver
The oxygen vacancies and micro-nano structure can optimize the electron/Li+migration kinetics in anode materials for lithium batteries(LIBs).Here,porous micro-nano structured VNb9O25 composites with rich oxygen vacancies were reasonably prepared via a fac
This study investigates the phase transformation and microstructure of porous FeAl parts sintered from elemental powder mixtures using in-situ neutron diffraction and in-situ thermal dilatometry.A single B2 structured FeAl phase was determined in the sint
As global air pollution becomes increasingly severe,various types of fibrous filters have been devel-oped to improve air filter performance.However,fibrous filters have limitations such as high packing density that generally causes high-pressure drop and
Fibers degradation and matrix cracks are very common during fabrication of composites,which seri-ously reduces the reliability and properties of the composites.In this work,2D-Cf/ZrB2-SiC composites were fabricated by a joint processing of slurry infiltra
We demonstrate the fabrication of wearable supercapacitor electrodes.The electrodes were applied to wearable fabric by supersonically spraying the fabric with reduced graphene oxide(rGO)followed by decoration with iron oxide(Fe2O3)nanoparticles via a hydr
The worldwide outbreak of COVID-19 since December 2019 has caused great challenges to health organizations,and brought tremendous impact on the global economy.There have been over 62.3 million confirmed infection cases and 1.4 million deaths reported unti
Gradient boosting decision tree(GBDT)machine learning(ML)method was adopted for the first time to automatically recognize and conduct quantitative statistical analysis of boundaries in bainitic microstruc-ture using electron back-scatter diffraction(EBSD)
Increasing iron content has been witnessed an essential method to improve the remanence of 2:17-type Sm-Co-Fe-Cu-Zr magnets,however,the inferior squareness factor accompanied with the increased iron content turns into a neck sticking problem.In this work,
Layered lithium nickel-cobalt-manganese oxides(NCM)have been highlighted as advanced cathode materials for lithium-ion batteries(LIBs);however,their low interfacial stability must be overcome to ensure stable cycling performance of the cell.In this work,w