论文部分内容阅读
将免疫算法、混沌与遗传算法相结合,提出了一种新颖的混沌免疫遗传算法,该方法利用混沌运动的遍历性、随机性来产生初始种群,加快搜索的速度;利用免疫原理的浓度计算及调整加入新的混沌序列来补充种群,增加种群的多样性避免陷入局部最优;交叉变异结束后在最优解附近再用混沌进行局部寻优提高解的精度。实验结果表明,所提出的算法能寻找到更好的优化结果,并且在搜索速度上明显优于遗传和免疫遗传算法。