论文部分内容阅读
摘 要:利用美國气象环境预报中心制作的NCEP 1°×1°再分析资料和黄河流域国家气象站(国家基准、基本和一般气象站)、区域站(地面加密观测站)逐小时降水资料,对2018年7月10—11日黄河流域中游出现的致洪暴雨过程进行诊断分析,结果表明:受台风“玛丽亚”西北移动影响,副高稳定少动,低槽移动缓慢,导致降水维持时间长,降水落区呈东北西南向;暴雨区主要的水汽来源为台风“玛利亚”,受黄河中游地形和中高纬度西北气流的影响,水汽通量辐合区域走向和暴雨落区一致,850—700 hPa为暴雨主要水汽输送层;暴雨区出现在中低层θse等值线密集区右侧暖区一侧,且中层存在θse/p>0的大值区域;高低空急流存在明显的耦合机制,中低层辐合区、高层辐散区重叠是降水强度增强和乔沟湾站大暴雨产生的主要原因,200 hPa散度正值区的移动早于低层散度负值区的移动,对降水落区移动有指示意义。700 hPa锋生函数水平分布和降水分布较为一致,锋生函数数值南小北大的水平分布和降水分布一致,锋生函数的大值中心和降水量超过100 mm的中心吻合。
关键词:水汽通量;水汽通量散度;高低空急流耦合;锋生函数;黄河中游
中图分类号:P458.1+21.1;TV882.1 文献标志码:A doi:10.3969/;.issn.1000-1379.2021.08.005
引用格式:乔春贵,梁钰,王君,等.黄河中游一次致洪暴雨过程的天气学诊断[J].人民黄河,2021,43(8):26-32.
Abstract: Using the NCEP 1°×1° reanalysis data produced by the U.S. Center for Meteorological and Environmental Prediction and the hourly precipitation data from the National Weather Station (national reference, basic and general weather station) and regional station (ground-based encrypted observation station) of the Yellow River Basin, the paper diagnosed and analyzed the process of flood-causing rainstorms that occurred in the middle reaches of the Yellow River Basin on July 10 and 11, 2018. The outcomes show that affected by the northwest movement of Typhoon Maria, the subtropical high is stable and moves less, and the low trough moves slowly, leading to long precipitation maintenance time and falling precipitation. The area is in the northeast-southwest direction; the main source of water vapor in the heavy rain area is typhoon Maria. Affected by the topography of the middle reaches of the Yellow River and the northwest airflow at mid-high latitudes, the trend of the water vapor flux convergence area is the same as that of the rainstorm area, 850-700 hPa It is the main water vapor transport layer of the rainstorm; the rainstorm area appears on the side of the warm area on the right side of the dense θse contour area in the middle and low layers, and there is a large value area of θse/p>0 in the middle layer; the high and low jets have obvious coupling mechanism, the convergence of the middle and low levels and the overlap of the high-level divergence areas are the main reasons for the increase in precipitation intensity and the heavy rain at Qiaogouwan Station. The movement of the 200 hPa positive divergence area is earlier than that the movement of the low-level divergence area. Movement is indicative. The horizontal distribution of the frontogenesis function at 700 hPa is consistent with the distribution of precipitation. The horizontal distribution of the frontogenesis function value is consistent with the distribution of precipitation in the south and the north is large. The large value center of the frontogenesis function coincides with the center where the precipitation exceeds 100 mm. [14] 李小莉,惠小英,程麟生.黃河中游一次中层低涡暴雨的中尺度数值模拟[J].高原气象,1995,14(3):305-313.
[15] 楚楚,任立新.黄河源区2018年洪水特性分析[J].人民黄河,2020,42(增刊2):14-16.
[16] 董立清,任金声,徐瑞珍,等.黄河中游强暴雨过程的中低纬度环流特征和水汽输送[J].应用气象学报,1996,7(2):160-168.
[17] 郑世林,赵培娟,吴蓁,等.台风倒槽导致河南不同强度降水的对比分析[J].气象与环境科学,2020,43(2):11-20.
[18] 胡玉梅,刘恒,徐林泽,等.小浪底库区一次极端大暴雨事件的诊断与模拟[J].人民黄河,2019,41(增刊2):6-8.
[19] 宋清芝,吕林宜.黄河中游一次致洪暴雨过程的形成机理[J].气象与环境科学,2018,41(2):52-59.
[20] 陈军武,黄维东,朱晓涛,等.祖厉河流域最大暴雨洪水特性研究[J].人民黄河,2020,42(4):7-11,29.
[21] 黄楚惠,李国平.一次东移高原低涡的天气动力学诊断分析[J].气象科学,2007,27(增刊1):36-43.
[22] 胡富泉,郭敏,张家澄.强对流天气短期预报θse特型法的业务应用[J].成都气象学院学报,1999,14(3):28-34.
[23] 朱乾根,周伟灿,张海霞.高低空急流耦合对长江中游强暴雨形成的机理研究[J].南京气象学院学报,2001,24(3):308-314.
[24] 朱乾根,林锦瑞,寿绍文,等.天气学原理和方法[M].4版.北京:气象出版社,2007:94-106.
[25] 段旭,段玮,张亚男,等.利用锋生函数对2008年年初昆明准静止锋生消过程的诊断分析[J].大气科学,2019,43(2):325-338.
[26] 李兆慧,王东海,王建捷,等.一次暴雪过程的锋生函数和急流—锋面次级环流分析[J].高原气象,2011,30(6):1505-1515.
[27] 郑婧,孙素琴,许爱华,等.强锋区结构的梅雨锋短时暴雨形成和维持机制[J].高原气象,2015,34(4):1084-1094.
【责任编辑 张 帅】
关键词:水汽通量;水汽通量散度;高低空急流耦合;锋生函数;黄河中游
中图分类号:P458.1+21.1;TV882.1 文献标志码:A doi:10.3969/;.issn.1000-1379.2021.08.005
引用格式:乔春贵,梁钰,王君,等.黄河中游一次致洪暴雨过程的天气学诊断[J].人民黄河,2021,43(8):26-32.
Abstract: Using the NCEP 1°×1° reanalysis data produced by the U.S. Center for Meteorological and Environmental Prediction and the hourly precipitation data from the National Weather Station (national reference, basic and general weather station) and regional station (ground-based encrypted observation station) of the Yellow River Basin, the paper diagnosed and analyzed the process of flood-causing rainstorms that occurred in the middle reaches of the Yellow River Basin on July 10 and 11, 2018. The outcomes show that affected by the northwest movement of Typhoon Maria, the subtropical high is stable and moves less, and the low trough moves slowly, leading to long precipitation maintenance time and falling precipitation. The area is in the northeast-southwest direction; the main source of water vapor in the heavy rain area is typhoon Maria. Affected by the topography of the middle reaches of the Yellow River and the northwest airflow at mid-high latitudes, the trend of the water vapor flux convergence area is the same as that of the rainstorm area, 850-700 hPa It is the main water vapor transport layer of the rainstorm; the rainstorm area appears on the side of the warm area on the right side of the dense θse contour area in the middle and low layers, and there is a large value area of θse/p>0 in the middle layer; the high and low jets have obvious coupling mechanism, the convergence of the middle and low levels and the overlap of the high-level divergence areas are the main reasons for the increase in precipitation intensity and the heavy rain at Qiaogouwan Station. The movement of the 200 hPa positive divergence area is earlier than that the movement of the low-level divergence area. Movement is indicative. The horizontal distribution of the frontogenesis function at 700 hPa is consistent with the distribution of precipitation. The horizontal distribution of the frontogenesis function value is consistent with the distribution of precipitation in the south and the north is large. The large value center of the frontogenesis function coincides with the center where the precipitation exceeds 100 mm. [14] 李小莉,惠小英,程麟生.黃河中游一次中层低涡暴雨的中尺度数值模拟[J].高原气象,1995,14(3):305-313.
[15] 楚楚,任立新.黄河源区2018年洪水特性分析[J].人民黄河,2020,42(增刊2):14-16.
[16] 董立清,任金声,徐瑞珍,等.黄河中游强暴雨过程的中低纬度环流特征和水汽输送[J].应用气象学报,1996,7(2):160-168.
[17] 郑世林,赵培娟,吴蓁,等.台风倒槽导致河南不同强度降水的对比分析[J].气象与环境科学,2020,43(2):11-20.
[18] 胡玉梅,刘恒,徐林泽,等.小浪底库区一次极端大暴雨事件的诊断与模拟[J].人民黄河,2019,41(增刊2):6-8.
[19] 宋清芝,吕林宜.黄河中游一次致洪暴雨过程的形成机理[J].气象与环境科学,2018,41(2):52-59.
[20] 陈军武,黄维东,朱晓涛,等.祖厉河流域最大暴雨洪水特性研究[J].人民黄河,2020,42(4):7-11,29.
[21] 黄楚惠,李国平.一次东移高原低涡的天气动力学诊断分析[J].气象科学,2007,27(增刊1):36-43.
[22] 胡富泉,郭敏,张家澄.强对流天气短期预报θse特型法的业务应用[J].成都气象学院学报,1999,14(3):28-34.
[23] 朱乾根,周伟灿,张海霞.高低空急流耦合对长江中游强暴雨形成的机理研究[J].南京气象学院学报,2001,24(3):308-314.
[24] 朱乾根,林锦瑞,寿绍文,等.天气学原理和方法[M].4版.北京:气象出版社,2007:94-106.
[25] 段旭,段玮,张亚男,等.利用锋生函数对2008年年初昆明准静止锋生消过程的诊断分析[J].大气科学,2019,43(2):325-338.
[26] 李兆慧,王东海,王建捷,等.一次暴雪过程的锋生函数和急流—锋面次级环流分析[J].高原气象,2011,30(6):1505-1515.
[27] 郑婧,孙素琴,许爱华,等.强锋区结构的梅雨锋短时暴雨形成和维持机制[J].高原气象,2015,34(4):1084-1094.
【责任编辑 张 帅】