论文部分内容阅读
本文提出了在连续过程的离散最优控制中选择采样周期和加权系数的一个方法。这个选择基于:1)线性的时间离散控制器;2)控制变量的范围受到限制;3)根据对系统的实际要求给定输出量的初始偏移。系统的性能则采用时间连续的二次型输出偏移损失函数以及类似的控制损失函数来表示。对不同的采样周期,利用标准的LQ方法来计算控制器,并通过选择控制损失项的加权系数,以使得对于给定的初始偏移,允许的控制范围得到充分利用。最后的采样周期则是权衡了偏移损失和控制损失的一个折衷选择。本文介绍的方法尤其适用于需要尽可能长的采样周期的情况。
This paper presents a method for selecting the sampling period and weighting coefficients in the discrete optimal control of continuous processes. This choice is based on: 1) a linear time-discrete controller; 2) a limited range of control variables; and 3) an initial offset of a given output based on the actual requirements of the system. The performance of the system is expressed in terms of a continuous quadratic output offset loss function and a similar control loss function. For different sampling periods, the standard LQ method is used to calculate the controller and by selecting the weighting coefficients to control the loss term, the allowable control range is fully utilized for a given initial offset. The final sampling period is a compromise between trade-offs for offset losses and control losses. This article describes the method is particularly suitable for the sample as long as possible the situation.