论文部分内容阅读
一、引言隐Markov模型(Hidden Markov Models,HMM)是近年来在语音处理领域中十分活跃的方法。但是,由于HMM参数很多,一般难以提供足够多的训练数据,以得到良好的模型。在大词汇量语音识别时,尤其如此。因此,很有必要对两个或多个针对同一事件的表示不同程度的细节和鲁棒性的模型进行合并。这样,确定每个HMM的相对可靠性,以便给出合并时每个HMM相应的权值,就是一个十分重要的问题。本文首先基于作者已做的语音识别中HMM训练算法工作,从著名的HMM训练算法——Baum-Welch算法