【摘 要】
:
由激光光束和高会聚透镜组成的光镊系统,能够直接操控微米级的物质微粒。在物理学和生物学等领域,这项新的实验方法起到了变革性的作用。光镊能够操控微粒是由于光的动量可以
论文部分内容阅读
由激光光束和高会聚透镜组成的光镊系统,能够直接操控微米级的物质微粒。在物理学和生物学等领域,这项新的实验方法起到了变革性的作用。光镊能够操控微粒是由于光的动量可以转化为作用到微粒上压力,通过这种光压束缚微粒。 作者的主要工作是组建一套可以实现纳米级位移的光镊系统。组建这套光镊系统有两个目标:一是能够进行研究性实验教学;二是能够开展科学研究。 光镊系统的建设已经基本完成。主要由激光系统、束缚光束和探测光束的光路系统、样品微位移系统、位移探测系统和相关实验辅助系统等组成。我们利用微粒的背散光通过位置敏感探测器确定微粒位置。详细介绍了搭建光镊过程中,根据物理要求,技术需要和仪器指标进行设计和实现设计。 我们对光镊的工作原理及其多种应用进行了调研,结合组建任务选择了一部分在前两章进行了论述。其中,在第一章主要综述了可能实现教学目标的力学和流体力学方面的一些实验,在第二章叙述了光镊的原理及一些备选器件的工作原理,并作了比较。光镊的搭建和我们的一些考虑主要放在第三章,第四章是对未来研究的展望。
其他文献
光弹性测量在材料应力研究、工程分析和生物力学研究中具有重要的作用和意义。为实现对光弹性应力的快速、实时测量,本文提出了一种基于分振幅斯托克斯参量测量的新方法,对该方
光敏剂是指在化学反应中,这一类只吸收光子并将能量传递给那些不能吸收光子的分子,促使这些分子发生化学反应,而光敏剂本身却不会参与化学反应,只是回复到原先的状态。由光敏剂引
粒子暗物质和非零中微子质量是存在新物理的强烈证据。本论文就这两个课题的唯象学研究做了一些探讨。 论文的第一部分阐述暗物质的唯象研究。众所周知,宇宙中约占80%的物质
电子散斑干涉(Electronic Speckle Pattern Interferometry, ESPI)具有测量精度高、全场、非接触、灵敏度高、实时快速等优点,可用于物体的三维形貌和变形的测量。电子散斑干
稀土元素有着特殊的电子层结构,因而具有丰富的发光能级。稀土离子掺杂的ZnO半导体发光材料在平面显示、半导体激光器和照明行业中有着重要的应用前景。本论文研究了稀土Eu和
光量子纠缠是量子光学领域一直以来的研究热点,它是量子信息和量子计算纠缠资源的主要来源之一,同时量子纠缠在量子物理基本理论中也有着重要的地位作用。本文简单介绍了光量子
《灵枢·终始》中有“久病者,邪气入深,刺此病者,深纳而久留之”的理论,穴位埋线就是在此指导下而产生的一种行之有效的针灸疗法。穴位埋线是将人体可吸收的羊肠线埋入穴位,利用羊
近年来,随着半导体自旋电子学的迅速发展,稀磁半导体受到了越来越多的关注。稀磁半导体是指在非磁性化合物半导体中通过掺杂引入部分磁性离子所形成的一类新型功能材料。人们可
量子计算与量子计算机的研究可以追溯到三十年前。其后,Shor量子因子分解算法和Grover量子搜索算法的提出,使量子计算机真正引起了广泛的关注。量子计算机能够迅速破解广泛采用