论文部分内容阅读
随着机器人技术的发展,具有良好环境适应能力的两栖机器人引起了人们越来越多的兴趣和重视。本文针对两栖类动物的身体结构和运动特点,结合课题组的相关研究工作,研制开发了一种多模态仿生两栖机器人系统。
首先,根据两栖机器人的作业环境和运动需求,设计了一种具有多种运动模态的仿生两栖机器人,名为“AmphiRobot”。它以仿鲹科鱼类游动为水下主要运动方式,以仿轮式运动为陆地主要运动形式;前者由模块化设计的仿鱼推进单元实现,后者由轮桨机构实现。可替换轮桨的“鳍肢”机构既能实现在水中的直行、俯仰、转弯、倒退等运动,又能在地面实现机器人“爬行”。
其次,对于地面运动控制,针对两栖机器人较长的身体机构,提出了一种可变构型转弯方法(Body-deformation steering approach)。利用仿鱼推进单元可偏离机器人纵向中线的特点,改变驱动轮桨和被动轮的相对位置,形成瞬时转动中心,实现转弯。在此基础上,分析了可变构型转弯的几种实现方式以及转弯过程中机器人的稳定性,得出了第三关节单独偏转的最优转向方式。
第三,对于水中运动,结合两栖机器人的结构和运动特点,建立了基于非线性振荡器的链式中枢模式发生器(Central Pattern Generator,CPG)网络模型;CPG网络模型由尾鳍CPG和胸鳍CPG两部分组成,其结构左右对称,分别由两侧输入激励驱动。当两侧激励相同时,机器人直行游动;激励不同时,实现转弯。根据鱼类的游动特点,提出了具有不同阈值的关节饱和函数,实现了摆动部长度、摆动频率和幅度的协调控制,以及控制参数的在线实时计算。
第四,基于两栖机器人的红外传感器信息,根据可变构型转弯方法,以及CPG控制的转弯量化强度,制定了包含转弯量化强度的细化规则库,实现了地面和水下避障控制;利用改进胸鳍法,实现了机器人在水中的俯仰运动;利用转体机构,实现了仿鲹科鱼类游动和仿海豚游动的平稳过渡;结合已有的陆地运动模态和水下运动模态,设计了一系列模式切换的智能策略来执行水陆切换,实现了水陆两栖运动。
最后,对所开展的工作进行了总结,并指出了下一步可开展的研究工作。