有序介孔SAPO?11催化剂的制备及其应用于油酸脱氧制备C8?C17烷烃

来源 :北方民族大学 | 被引量 : 0次 | 上传用户:sjtshuaige
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
航空煤油基本组成为碳数在8-17的烷烃(C8-C17),部分环烷烃、芳烃和少量添加剂。采用动植物油脂衍生物脂肪酸为原料可生产C8-C17烷烃,由此得到的航空煤油称为生物航空煤油,该燃料的使用既可以缓解由于二氧化碳排放造成的温室效应,缓解石油供应紧张压力,还可以降低化石燃料生产成本。SAPO-11分子筛酸性温和、具有独特的孔道结构(椭圆形十元环一维直孔道),是一种出色的酸性分子筛载体。贵金属Pt具有较好的脱氧性能,反应条件相对于传统的催化剂也比较温和,被广泛应用于油脂脱氧(DO)催化反应中。本文制备Pt-SAPO-11分子筛双功能催化剂用于油酸DO制备C8?C17烷烃组分。本文的具体研究工作如下:
  (1)本文以聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物(P123)为表面活性剂,采用一步水热法制备了有序介孔分子筛SAPO-11(OMSMS)载体,然后分别采用浸渍法和沉积沉淀法制备了Pt基金属-酸双功能催化剂。TEM和小角XRD表征结果表明,P/Al摩尔比例为0.95时,合成的SAPO-11分子筛具有有序的条形介孔孔道;煅烧温度为700℃时,样品的有序介孔孔道更清晰,其BET比表面积为171m2/g;采用沉积沉淀法制备的催化剂活性组分Pt分散性更好,Pt纳米颗粒粒径更小(3-6nm)。通过考察催化剂对油酸DO反应的催化活性,发现油酸在340℃下反应3h,C8-C17烷烃收率为78%;催化剂在重复使用两次之后,随着活性组分部分流失,催化剂活性降低,C8-C17烷烃收率下降到71%。
  (2)本文采用原位封装合成法和协调自组装法,将Pt纳米颗粒封装在SAPO-11分子筛载体孔道内能有效防止其脱落,一步合成了有序蠕虫状介孔Pt@SAPO-11(Pt@S-11)和SA-Pt@SAPO-11(SA-Pt@S-11)催化剂。表征结果显示,所有样品均具有有序蠕虫状介孔结构,金属活性组分Pt分散均匀且粒径分布在3?7nm之间;Pt负载量为1.2%的样品,SAPO-11载体与金属Pt之间的相互作用力最强;1.2%Pt@S-11具有最大的中强酸位点,NH3脱附量为6.2cm3/g STP。将催化剂应用于油酸DO反应中,在最佳反应条件下,油酸DO得到的C8?C17烷烃收率为80.0%。催化剂在重复利用5次后,依然具有较好的催化活性,得到的C8?C17烷烃收率保持相对稳定,为77.1%。
  
其他文献
雪粒在风力作用下会发生复杂的漂移运动,随着建筑物周围和屋盖上积雪的不均匀沉积,建筑的气动特征也会随着改变。大量的案例表明,屋面上雪粒的不均匀沉积及其造成的气动效应改变对建筑屋盖结构的安全、舒适和耐久度造成了明显的影响。因积雪造成的建筑物倒塌事故常出现于大型公共设施屋盖结构和简易钢结构中。为此,本文从试验研究和数值模拟方面进行了如下几方面的工作。  1)对常规积雪侵蚀实验方法进行了验证,发现常规方法
学位
煤矿深部巷道开挖后,由于高地应力与围岩低强度之间的突出矛盾,极易发生大变形失稳致灾。为实现深部巷道围岩稳定控制,需要揭示深部巷道围岩大变形失稳过程及其与支护结构的相互作用机理。为此,本研究基于有限元-离散元方法(FDEM),开展煤矿深部巷道围岩破裂碎胀变形及稳定控制模拟研究。目前,FDEM存在计算效率低、计算参数多且取值依据不明确、岩体加固模型少、锚固支护作用机理算法研究不足,无法有效模拟研究预应
基于运行能耗数据科学描述建筑用能特征,评价建筑实际用能水平,是衡量节能工作是否达到预期目标,并有针对性的优化调整节能措施的基础,对引导节能工作具有重要意义。降低采暖能耗是严寒地区居住建筑节能减排的工作重点,相关工作是否取得预期效果,能否在合理评价建筑实际用能的基础上寻求节能减排的新举措,仍有待探究。因此,本文以内蒙古地区居住建筑为例,基于不同层面下建筑的运行采暖能耗特征,围绕建筑用能水平评价及用能
学位
降水的时空分布特征及预报技术是当前国际社会上的两大热点议题,掌握降水的时空变化规律、做好准确的降水预报对防灾减灾、保障经济社会发展具有重要的现实意义。但由于降水特别是极端降水具有高度时空异相性,在区域尺度上极端降水的时空变化规律仍不清晰。另外,由于气候和天气系统固有的混沌性和随机性,在降水预报行业中,随着预见期延长,其影响因素随之增加,不确定性也增大,导致中长期特别是长期降水预报的难度很大。纵观国
经过近两百年的发展,混凝土已成为当今世界上使用最为广泛的建筑材料。随着研究的深入,材料性能不断提高,施工工艺不断改进,但结构开裂问题却始终未能得到很好的解决。长期的经验表明,对混凝土结构进行数值仿真,根据仿真结果调整施工措施是控制结构裂缝行之有效的方法之一。因此,需要准确把握混凝土的各项热学、力学性能,并将其合理反映到结构数值仿真模拟中。混凝土热膨胀系数是温度应力仿真中的重要参数,长期以来在仿真过
学位
氢气是一种理想的载体,它具有可再生能力,燃烧释放能量大且纯洁无污染等优点,而光催化分解水制氢作为一种清洁的产氢方式是人们研究的重点。由于光催化剂中的光生电子与空穴会快速复合,导致光催化效率较低,又因为贵金属助催化剂的价格高昂,产量稀少,并不适合可持续发展。因此研究具有高效析氢效果,并且能够代替贵金属材料的光催化析氢材料是光分解水产氢技术发展的一条重要路线。本文的主要内容:对催化剂的改性以及对产氢条
分子印迹聚合物由于其独特的结构可预测性、识别特异性和应用广泛性,在各个领域得到了广泛的应用。本文分别以金属有机框架(MIL-NH2-125(Ti))、聚甲基丙烯酸缩水甘油酯(PGMA-EGDMA)、聚4-氯甲基苯乙烯(PVBC-DVB)为基质包裹Fe3O4为基质,采用可逆加成断裂链转移技术分别制备了氟喹诺酮类、甲砜霉素类分子印迹聚合物。通过在分子印迹表面接枝亲水性功能单体和交联牛血清,得到限进介质
学位
化石燃料消耗导致的环境污染以及能源短缺问题使得探索高效、环保、可持续的能源刻不容缓。氢能作为一种可替代化石燃料的新能源引起了人们的广泛关注。光催化技术可利用半导体光催化剂或染料敏化体系在太阳光照射下将水分解为H_2和O_2,是一种很有前途的将太阳能转化为氢能的技术。助催化剂在光催化产氢反应中起着重要的作用,它不仅可以加速电荷的分离和转移,延缓电子-空穴对的复合,而且可以提供更多的活性位点,降低产氢
本文通过对过渡金属硫化物NiCo_2S_4的界面进行调控,成功制备了空心球形NiCo_2S_4。在此基础上,通过采用不同材料对空心球形NiCo_2S_4的表面结构与光生载流子转移路径进行同步调控,分别构筑了石墨烯量子点(GQDs)敏化,具有type-Ⅰ、type-Ⅱ与Z-scheme异质结的复合材料,并利用复合光催化材料实现高效光催化析氢。此外,将过渡金属硫化物扩展到非金属类光催化材料,运用形貌与
枸杞(Lycium barbarum)作为一种药食同源性植物,具有较高的食用及药用价值。迄今为止,枸杞提取物(Lycium barbarum extract,LBE)是最受重视和研究最多的化学成分。然而,仅有很少的研究采用已阐明结构的多糖进行生物活性研究,大多数用于药理学研究的多糖样品的制备方法在文献之间差别很大。不同的制备和纯化方法可能会影响提取的化学结构、分子量和糖链构象,并由此影响生物活性。