论文部分内容阅读
随着快速增长的能量需求与日益显著的由于温室气体排放导致的全球气候变暖,生物燃料的研发变得更为迫切与重要,逐步成为一个关系到我国经济可持续发展、生态环境保护与国家能源安全的重要因素。从燃料性能角度考虑,可再生石油是石油的最佳替代品,关键是如何通过非化石能源获得石油燃料。发展新型优质生物液体燃料,已经成为生物能源领域的主要发展趋势之一。脂肪酸族液体生物燃料在能量密度和与现有运输系统的兼容性方面都有很大的优势。研究脂肪酸族液体生物燃料的生物合成途径及其代谢调控机制、构建高效定向生物合成脂肪酸族液体生物燃料的基因工程微生物菌株,对于发展新型优质生物液体燃料产品、解决传统生物液体燃料产品品质不佳的瓶颈问题具有重要意义。
蓝细菌PCC6803作为一种光能自养型的微生物,因其生长速度快,遗传信息相对清晰,遗传操作简单越来越受到生物燃料研究者的关注。脂肪酸族生物燃料分子的合成离不开脂肪酸代谢途径。目前关于蓝细菌脂肪酸代谢途径的研究还处于起始阶段。研究发现蓝细菌PCC6803细胞内存在自由脂肪酸且自由脂肪酸的一个来源是膜脂循环。
脂肪酸的转运以及转化为其他的衍生物,都需要首先被激活,之后才能被利用。为了鉴定蓝细菌中负责脂肪酸激活的蛋白,作者首先从集胞藻PCC6803和鱼腥藻PCC7120中克隆了相应的候选基因(slr1609和alr3602),将其导入fadD缺失菌株XL100,通过互补实验证实这两个酶能够部分互补fadD的功能。之后作者从细胞裂解液的可溶性部分分离纯化得到该蛋白,随后通过酶活测定发现这两个酶都具有脂酰CoA合酶活性。而之前的研究报道证实从细胞膜分离纯化的Slr1609具有脂酰ACP合酶功能。作者进一步利用Western blot证实了该蛋白在集胞藻PCC6803中细胞质和细胞膜组分都存在。于是作者推测是空间位置不同导致蛋白呈现不同的构象从而展现不同的功能。
为了验证脂肪酸激活酶在脂肪酸类生物燃料生产中的作用,作者构建了一系列的集胞藻PCC6803中该基因缺失突变株和过量表达株,并检测了不同菌株中脂肪酸,脂肪烃和脂肪醇的产量。作者发现slr1609的敲除使自由脂肪酸产量提高一倍,使脂肪烃产量下降90%,使脂肪醇产量降低60%。slr1609过表达对于自由脂肪酸和脂肪烃产量的影响不显著,但是能够使脂肪醇产量提高60%。这些结果显示slr1609对于脂肪烃生产是一个必要但不充分的条件,slr1609对于脂肪酸衍生物的合成具有重要作用。
对其他生物来源的脂酰CoA合成酶功能的研究表明脂酰CoA合酶能够通过调节细胞中脂酰CoA和脂肪酸之间的相对含量来调控其他基因的转录。为了进一步阐明slr1609在集胞藻PCC6803基因转录调控中的作用,作者利用基因芯片技术比较了slr1609突变株与野生型的转录谱差异。芯片对比分析显示在3,165个基因中共有299个差异表达基因,其中6个参与脂肪酸代谢的基因有不同程度的下调,此外还有一些参与光合作用,基因转录翻译过程和具有调节功能的基因转录发生变化。作者进一步研究还发现slr1609缺失能够改变细胞对低温的反应,也降低了细胞在高温下的光合放氧速率。
另外,作者还对可能参与膜脂循环的脂肪酶候选基因sll1969的功能进行了初步研究。通过原核表达和体外酶活表征,发现sll1969编码蛋白确实具有脂肪酶的功能,它的最适反应温度是55℃。通过构建集胞藻PCC6803 sll1969基因突变株分析自由脂肪酸含量和组成变化,发现Sll1969不是细胞内存在的唯一的脂肪酶。