论文部分内容阅读
纳米材料最主要的特征之一是“小尺寸”,由此产生了“有限尺寸效应(finite-size effects,FSE)”。由于样品尺寸受限,动量守恒发生驰豫,拉曼光谱的波矢守恒定则不再满足。由于电子的运动受到势垒限制,系统能量从体材料时的连续能级变为纳米材料时的分立能级,即出现了所谓“(量子)尺寸限制效应(sizeconfinement effect,SCE)”。
拉曼光谱是一种可以在微观层次上研究尺寸限制效应的方法。尺寸限制效应使得纳米材料的拉曼光谱同时出现了体现电子和声子尺寸限制效应的所谓“共振尺寸选择效应(resonance size select effect,RSSE)”。我们组已有的实验结果却揭示了一个奇怪的现象,即尺寸限制效应在极性半导体的极性和非极性的光学声子中反常的不存在。上述现象在极性半导体声学声子上是否存在还没见报导。因此,该现象是否具有普遍性是尚待证明的。证明该现象的普遍性以及进一步发掘它的根源和本质,是具有基础意义的重要课题。
据此,首先,我们研究了有尺寸分布的GaN纳米线和尺寸近均匀的不同尺寸ZnO纳米粒子声学声子的拉曼光谱。实验表明GaN纳米线声学声子有共振尺寸选择效应,ZnO纳米粒子声学声子有尺寸限制效应。这些结果证实了极性纳米半导体声学声子和它的光学声子不同,它们存在共振尺寸选择效应和尺寸限制效应。其次,我们研究了尺寸近均匀的不同尺寸ZnO纳米粒子的极性和非极性模光学多声子拉曼谱。实验表明ZnO纳米粒子极性的A1L模和E1L模的多声子谱也没有显现尺寸限制效应。同时,我们还研究了有尺寸分布的ZnO纳米粒子非极性光学声子在不同激发波长下的多声子拉曼谱,发现它们也没有显现共振尺寸选择效应。
从以上结果,可以看到一个规律,即存在尺寸限制效应的声子,都是没有Frohlieh电-声子相互作用的声子。因此,我们有理由推测上述声子不存在尺寸限制效应是源于它们存在Frohlich相互作用。存在Frohlich相互作用,将使相应的单声子谱是非晶谱,而多声子谱是线谱;这一点已被实验证实。从而说明,极性纳米半导体中光学声子不存在尺寸限制效应的根源和本质在于存在Frohlich相互作用和平移对称性破缺。
人们已在反铁磁纳米材料观测到了有限尺寸效应对磁相变温度的影响。但是还缺乏在微观层次上对这一现象的研究。我们选用反铁磁半导体NiO纳米花朵样品,测量了它在不同温度下的拉曼光谱。除确定了NiO纳米花朵的奈尔温度从体材料的523K下降到383K-503K,还第一次证明了双磁子模频率和强度,即磁子的能量和数量,随温度以不同规律逐渐变化,即分别与温度成幂指数和指数关系变化。