论文部分内容阅读
变体飞行器是目前航空领域中研究的热点问题,折叠机翼展开折叠过程中的动态稳定性问题是研究折叠机翼的一个关键基础性问题,本课题以Z型折叠机翼作为研究对象,分析该类可变形机翼在折叠展开过程中的非线性动态特性,从而揭示该类复杂多体结构的非线性动力学特性。 本文将Z型折叠机翼简化为以刚性铰链相连接的三块碳纤维复合材料层合板。采用Reddy经典板理论、考虑Von Karman几何大变形,利用Hamilton原理建立了Z型可折叠复合材料层合板结构的非线性动力学方程,根据Z型板结构的内部连接和整体的边界特性,通过有限元模拟设置合理的边界条件进行结构的模态分析与谐响应分析,研究Z型折叠板不同模态下的振动形式,从而求得Z型复合材料折叠板前两阶的模态函数。运用Galerkin法对Z型折叠板结构的非线性动力学方程进行二阶离散,利用数值方法分析Z型折叠板的特定参数条件下的非线性动力学行为。 论文的研究内容分为以下几部分: (1)动力学模型的建立:将Z形折叠机翼简化为最左端是与机身的固定端,中间板以对边理想铰链与其他两块板连接,第三块板最外端是自由端的Z型折叠复合材料层合板。基于经典板理论、von Karman大变形理论、利用Hamilton原理建立了结构的非线性动力学控制方程。 (2)通过文献中的结论及理论分析,对特定折叠角度的Z型折叠板进行模态分析与谐响应分析,根据Z型折叠机翼的振动形式假设合适的模态函数形式,结合结构边界条件和系统动力学方程得到的边界条件最终确定三个复合材料层合板结构的二阶振动模态函数的具体系数,然后对结构的非线性运动方程进行无量纲化,得到无量纲形式的动力学方程,通过Galerkin方法对Z型复合材料层合板结构的偏微分方程进行二阶离散,最后得到Z型折叠板六自由度的非线性常微分方程。 (3)通过数值方法研究Z型复合材料层合板结构不同参数作用下的波形图、相图、频谱图、以及分叉图等分析折叠角度参数、板表面外激励振幅、外激励频率等因素对系统非线性振动响应的影响,结果发现系统的折叠角度不会改变结构的振动特性,而外激励振幅变化会引起Z型复合材料层合板结构周期运动与混沌运动之间的转变。 (4)考虑Z型复合材料层合板结构的基本参数共振-1∶1内共振的情况,用多尺度方法进行摄动分析,运用MATLAB对系统的平均方程进行数值模拟得到结构的波形图与相图,分析外激励振幅对系统的非线性振动响应特性的影响。结果发现外激励幅值从0到50变化过程中,内板为周期运动;中间板和外板是混沌运动。外板的混沌现象比中间板剧烈。