【摘 要】
:
膜电极(MEA)是燃料电池的核心,其性能受多种因素,如电极的润湿性、催化剂层内离子传导能力、质子交换膜的电导率、电催化剂的固有活性等的影响.该论文通过对PEMFC核心电极MEA从基本材料到电催化剂制备、电极成型等进行了多方面选择、对比,对电池电极体系的铂载量、工作温度、工作压力等作了研究.为增加铂与离子交换膜的接触以及提高电催化剂的利用率,可采用Nafion溶液浸渍电极以及Nafion溶液作粘合剂
论文部分内容阅读
膜电极(MEA)是燃料电池的核心,其性能受多种因素,如电极的润湿性、催化剂层内离子传导能力、质子交换膜的电导率、电催化剂的固有活性等的影响.该论文通过对PEMFC核心电极MEA从基本材料到电催化剂制备、电极成型等进行了多方面选择、对比,对电池电极体系的铂载量、工作温度、工作压力等作了研究.为增加铂与离子交换膜的接触以及提高电催化剂的利用率,可采用Nafion溶液浸渍电极以及Nafion溶液作粘合剂制备电极.研究了碳的热处理和PT/C电催化剂后处理对PEMFC氧电极性能的影响.结果表明:碳热处理后,显著提高了电极的性能,其原因可归结于铂的颗粒效应及碳材料的催化导电效应.结合物理测试SEM、TEM、XRD手段,观察和测定了电极截表面形貌、催化剂中铂颗粒的粒径及碳材料的晶相结构等,有助于全面研究电池电极特性.
其他文献
第五代移动通信系统是近年来国内外研究的热点,信道测试、建模与仿真技术研究对5G链路和系统仿真及设计起着极为重要的作用。与此同时,机器学习也逐渐应用于信道建模领域,可以很好地学习数据特征解决时变序列的预测问题。本文的主要工作有:第一,基于现阶段研究较广的两种机器学习的算法,建立了利用神经网络算法与支持向量机算法进行信道参数建模的方法。第二,基于毫米波26 GHz室外微蜂窝在视距信道和非视距场景下的实
与普通建筑相比,地震遗址建筑在保护性加固中面临着施工难度大,施工环境复杂、图纸信息不完整及地质条件差等一系列问题,施工过程中风险的隐蔽性强、不确定性大以及风险的动态变化等,使得传统风险管理方法已不再满足遗址建筑快速全面的风险识别和科学有效的风险防控需求,难以降低安全事故的发生。BIM技术的快速发展,其高度可视化和施工模拟化等优点现已被广泛应用于新建工程领域。为了推广BIM在遗址建筑施工领域的应用,
目前,功能性纳米材料的应用是科学研究重要方向。在非贵金属Cu纳米催化剂的基础上引入其它金属元素,设计构筑一系列具有特定结构、形貌的二元铜基纳米金属催化剂,可以达到改变催化剂活性组分的电子性能和几何结构、改善铜基纳米催化剂的催化性能的目的。本论文研究铜基纳米催化剂的组成、形貌、结构与催化硝基芳烃加氢制备氨基芳烃催化性能的构效关系和作用机理,研究成果总结如下。 在纳米Cu基催化剂中引入贵金属Pt,采
随着世界经济的不断发展,能源短缺及水体污染已经逐渐成为威胁人类生存和进步的重要问题,因而着重开发清洁可再生能源以及简单、高效的水体纯化技术已成为当下的研究热点。目前,基于半导体材料的光催化分解水制氢及氧化降解技术可有效的转化和储存无尽的太阳能,被认为是解决上述问题最有效的方法之一。其中,大力开发高效、稳定的宽光谱响应型光催化材料成为实现该项技术的关键所在。在目前主流的宽光谱响应型光催化材料中,三元
太阳能是一种储量巨大且易获得的清洁能源,一直被认为是人们优化能源结构和保护环境的希望。半导体光催化技术因为可以高效利用太阳能用于光分解水制氢、降解水中的污染物、还原二氧化碳以及大多数有机合成反应,受到众多研究学者的广泛关注。石墨相氮化碳作为一种非金属有机聚合物半导体,具有良好的化学稳定性,热稳定性,光电性能。适合的禁带宽度和价带、导带位置带来了良好的可见光响应,以及适宜的电子转移路径,使其在光催化
近年来,社会的快速发展引发了能源过度利用和环境污染等问题。大力开发清洁,高效,可再生的新型能源工作势在必行,而半导体光催化技术被认为是有效的策略。作为对可见光响应的半导体催化剂之一,石墨相氮化碳(g-C3N4)具有诸多的优点,如:廉价的原材料,简单的合成方法,良好的热稳定性,化学稳定性,适合的能带位置和禁带宽度等,使其备受关注。然而,利用简单热聚合的制备方法获得的g-C3N4不仅比表面积较低,反应
能源短缺的局势严重制约着社会的进步,寻找清洁的可再生能源成为当务之急。氢气(H2)作为清洁可再生能源,具有燃烧热值高、绿色无公害而且储备途径简便易行等优势,被认为是21世纪最有希望能应用于实际的新能源。光催化分解水技术十分有利于氢能源的制备,而开发高性能且耐用的光催化材料是该技术的核心,也是实现太阳能向氢能高效率转换的关键。石墨相氮化碳(g-C3N4)是一种新型有机聚合光催化材料,具有优良的光催化
在各种现有的储能技术中,高性能锂离子电池(LIBs)的发展对于便携式电子设备至关重要,它们也显示出在电动交通系统上的巨大潜力,包括电动汽车和混合动力电动汽车。硅材料含有高的理论比容量、低放电平台以及在自然界中储量丰富,因此它被广泛认为是最具吸引力的负极材料。然而,硅材料严重的体积效应阻碍了其在商业化上的发展,本文以改善硅体积膨胀为出发点,设计制备出多种硅基材料并作为锂离子电池负极材料进行储锂性能的
该文利用静态挂片失重法、电化学测试技术的和微观分析方法(ESEM、EDS、XRD),研究了A钢在胜利油田三元复合驱油剂模拟盐水液中的电化学腐蚀化学行为及表面组成.研究结果表明:在曝氧条件下,A多在模拟盐水中的腐蚀过程主要由氧去极化控制,而且是氧的扩散控制,有点蚀敏感性;HPAM、BES或PS加入到盐水中并未改变A钢的腐蚀控制,也未引起A钢的点蚀;三元复合驱油剂或NaCO的加和使则A钢的腐蚀随浓度的