论文部分内容阅读
稀土基AB5型储氢合金因其良好的综合电化学性能而成为MH/Ni电池中应用最为广泛的负极材料,但其较差的动力学性能使其难以满足迅速发展的动力电池的需要。为了获得具有低成本、良好动力学性能的低钴AB5型储氢合金,本课题在市场化AB5型合金的基础上进行成分优化,用Cu-P部分替代合金中的Co,以期在不降低合金循环性能的基础上改善其动力学性能。本文通过合金成分优化并结合热处理方法,系统研究了Cu-P含量和热处理温度及热处理时间对化学计量比合金MlNi3.55Co0.75-xMn0.4Al0.3(Cu0.75P0.25)x(x=0,0.1,0.2,0.3,0.4,0.5)晶体结构和电化学性能的影响。 针对储氢合金电极反应速率难以准确测定的问题,本文基于能垒理论,提出了一种定量的研究储氢合金吸放氢反应速率常数的电化学方法。由塔菲尔极化曲线的斜率推导出吸放氢反应的传质系数,其中传质系数作为极化电势下能垒的对称性的量度,可以用它求出吸放氢反应的标准活化吉布斯自由能值,将得到的自由能值代入阿仑尼乌斯方程,即可计算出吸放氢反应的速率常数,此方法也可以用来分析其它电池体系的动力学性能。同时针对在以前研究中较少涉及的金属氢化物电极表面吸附过程,本文应用电化学交流阻抗法对其进行了研究,结果表明电极表面的氢吸附过程可以成为储氢合金电极反应的限制步骤。 应用上述方法,本文首先研究了不同Cu-P含量对成分优化合金晶体结构和电池性能的影响。MlNi3.55Co0.75Mn0.4Al0.3合金加入Cu-P后,富P相和富Mn相在LaNi5相的相界处析出,导致合金由单相结构变为复杂的多相结构,且随着Cu-P含量的增加,偏析相的丰度逐渐增大。这一现象使得合金的最大放电容量从296.8 mAh/g(x=0)降至275mAh/g(x=0.5);合金的容量衰减速率在x=0.3时达到最小值0.80mAh/g·cycle;同时合金的倍率放电容量随着Cu-P含量的增加逐渐增大,在1500mA/g放电电流下,合金的HRD值从48.23%(x=0)增至67%(x=0.5)。 其次研究了不同Cu-P含量对成分优化合金动力学性能的影响。储氢合金的倍率性能由吸放氢反应各个过程的动力学性能所决定,但目前国内外对于吸放氢反应动力学参数的研究尚难以达成共识,因此本文采用了几种不同的电化学方法来研究吸放氢反应的动力学参数。用线性极化曲线研究了合金的传荷过程,随着Cu-P含量增加,合金的传荷电阻Rct从421.9mΩ·g(x=0)降至173.4mΩ·g(x=0.5),相应的交换电流I0从61.88mA/g(x=0)增加到150.5mA/g(x=0.5);用交流阻抗法研究了合金的氢吸附过程,结果表明氢吸附电阻Ra从149.1mΩ·g(x=0)急剧减小到7.67mΩ·g(x=0.5);分别采用恒电流间歇滴定法、循环伏安法和交流阻抗法研究了合金内部的氢原子扩散过程,所得的氢扩散系数D均随着Cu-P含量的增加逐渐增大,但其具体数值略有差别,这是由各种方法的实验原理的不同以及公式推导过程中的误差所决定的;随着Cu-P含量的增加,充放电过程的副反应得到抑制,氧化反应速率常数和还原反应速率常数均逐渐增大。上述结果表明成分优化合金的动力学性能得到了明显增强。 最后研究了不同热处理温度和热处理时间对成分优化合金晶体结构和电化学性能的影响。储氢合金因其较慢的冷却速度而具有较多的晶体缺陷和较大的内部应力,从而会降低合金的循环稳定性。为了消除合金的晶体缺陷和内部应力,本课题对MlNi3.55Co0.45Mn0.4Al0.3(Cu0.75P0.25)0.3合金在1073K、1173K、1273K和1373K下进行了8h的热处理。结果表明,热处理后的合金主相仍为CaCu5型结构,合金成分分布较热处理前更加均匀,在1373K时,一些低熔点元素熔化形成偏析相。合金的容量衰减速率在1273K时达到最小值0.74mAh/g·cycle;在300mA/g、600mA/g放电电流下,合金的倍率放电容量随着温度的增加而逐渐减小,在900mA/g、1200mA/g、1500mA/g放电电流下,合金的倍率放电容量随温度的增加而先减小后增大,在热处理温度1273K时达到最小值。并进一步对MlNi3.55 Co0.45Mn0.4Al0.3(Cu0.75P0.25)0.3合金在1273K下进行了不同热处理时间的研究,时间分别为2h、4h、6h和8h。研究发现,随着热处理时间的增加,合金的主相仍为CaCu5型结构,合金成分分布更加均匀。合金的容量衰减速率在4h时达到最小值0.56mAh/g·cycle;在300mA/g、600mA/g放电电流下,热处理时间对合金的倍率放电容量影响不大,在1200mA/g、1500mA/g放电电流下,合金的倍率放电容量随热处理时间的增加而逐渐减小。