论文部分内容阅读
等通道转角挤压(Equal Channel Angular Pressing—ECAP)是制备超细晶金属材料的重要方法之一。本论文根据ECAP变形的特点,选择Al单晶体、Cu单双晶体、Fe及Cu-3%Si合金多晶体作为研究对象,设计了一系列实验以揭示ECAP剪切机制、ECAP过程中的组织细化机制、晶体中滑移与孪生的竞争、剪切变形与晶界的交互作用以及面心立方金属形变孪生的一般规律。本文试图通过对这些实验结果的分析和讨论,加深对上述基本问题的认识与理解,并为采用ECAP技术制备高性能结构材料提供理论与实验指导。
经一次ECAP挤压后多晶材料中形成的与挤出方向约成270的剪切流线由ECAP过程中形成的一个个拉长的晶粒组成。这些晶粒的拉长方向受晶粒的形状、取向以及模具等因素的影响,其中经直角模具制备的材料中,剪切流线与挤出方向所成的角度为27°。从金属材料塑性流变的观点解释了剪切流线的形成过程。根据ECAP透明模具演示实验,得出了材料在ECAP模具中的流变场方程。压缩实验表明,剪切流变面是一个弱化面,剪切流线对材料力学性能各向异性有重要影响。
铝单晶体的初始取向对其在ECAP过程中的位错结构演化和晶粒细化有重要影响。滑移面和滑移方向均平行于插入方向的单晶体在ECAP后形成了较大的胞状结构,由多个滑移面上的滑移系共同开动而形成:滑移面和滑移方向平行于模具对角面的单晶体在ECAP后形成了两个方向的带状结构,由两个主要滑移面上的滑移系启动而形成;滑移面和滑移方向垂直于模具对角面的单晶体在ECAP后只形成了一个方向的带状结构,由一个主要的滑移面上的滑移系开动形成。从最新建议的ECAP剪切方向,可以很容易理解三个不同取向单晶体在ECAP过程中的结构演化。在一些单晶体实验中,沿垂直于模具对角面的切应力在ECAP变形中起很重要的作用。
为了揭示晶界在ECAP剪切变形过程中的作用,设计了四组不同晶界方向的铜双晶体样品,发现四个双晶体的晶界在ECAP剪切变形后表现出不同的演化特点。具有水平晶界的双晶体晶界在ECAP后与挤出方向成27°角,同剪切流线的走向相似。具有45°倾斜晶界的双晶体的晶界绕逆时针方向转动了约8°角,在晶界附近由于剪切带与晶界的强烈交互作用,晶界发生了扭折和弯曲。具有竖直晶界的双晶体的晶界绕逆时针方向转动了90°角,由初始的竖直晶界变为了水平晶界。腐蚀后发现晶界附近形成了与晶界成45°方向的一系列微小剪切带。具有135°倾斜晶界的双晶体变形后晶界绕逆时针方向转动了约75°,变形中形成的变形带结构主要沿着晶界分布,说明ECAP过程中的剪切变形沿晶界方向施加。四个Cu双晶体晶界在ECAP过程中的演化过程,尤其是具有45°晶界和135°晶界的双晶体的变形,充分表明沿垂直于模具对角面的剪切在Cu双晶体的ECAP中具有很重要的作用。
通过特殊设计Cu单晶体和Al单晶体的取向,成功地在室温和低应变速率下通过ECAP方法,在Cu中获得了丰富的变形孪晶,在Al单晶体中获得了大量的微孪晶和层错,说明晶体学取向对Cu和Al的形变孪生行为有重要的影响。铸态和轧制退火态Cu-3%Si合金在ECAP和拉伸中的形变孪生行为表明,对于低层错能材料来说,晶体学取向也是形变孪生的重要因素。基于几种面心立方金属形变孪生的实验结果,从基本的位错理论出发全面分析了控制面心立方金属形变孪生的若干因素,表明面心立方金属形变孪生所需的孪生应力由层错能、晶粒尺寸和晶体学取向三方面因素共同决定。在不同的尺度下,控制面心立方金属形变孪生的主要因素是不同的。判断一种面心立方金属在一定的变形条件下是否发生形变孪生,可以从两方面入手来分析:首先,特定金属的孪生应力,τrequired,可以根据其层错能、晶粒尺寸和晶体学取向来估算;而后根据其所处的变形条件来估算变形过程中外界施加的切应力,τapplied,如果满足τapplied>τrequired,形变孪生就会在变形中出现。另外,形变孪生和位错滑移在变形过程中不一定是相互竞争的变形机制,如果条件具备,二者可能会同时启动。