超声化学法合成稀土纳米材料

来源 :中国科学院长春应用化学研究所 | 被引量 : 0次 | 上传用户:tt7506
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
稀土纳米材料因其独特的光、电、磁和催化等性能,在纳米器件和功能材料等诸多领域具有重要的应用价值。大量研究表明,纳米材料的物理和化学性质与其尺寸、成分、形貌和晶型密切相关。稀土纳米材料的合成方法有许多,然而,要真正实现这类材料的简单可控合成仍然是个艰难的课题。超声化学法由于具有操作简单、合成周期短、反应温度低、成本低廉并且产物均匀、粒径分布窄和纯度高等突出优点,已经在无机纳米材料制备领域中显示出独特的魅力。因此,本论文的工作是运用超声化学法合成有广泛应用前景的稀土纳米材料,对产物的形貌和粒径进行有效的调控,研究和分析其形成机理,并进一步考察其形貌、结构与性能之间的相互关系。   在本论文中,研究的体系集中在稀土磷酸盐、稀土氟化物和稀土钒酸盐三类纳米材料。   采用超声化学法得到的CePO4:Tb和CePO4:Tb/LaPO4(核/壳)纳米棒结晶完好,具有CePO4体材料的六方相结构。CePO4:Tb纳米棒直径为10-30 nm,长度为200nm,CePO4:Tb/LaPO4(核/壳)纳米棒的LaPO4壳的厚度为2-10 nm。CePO4:Tb和CePO4:Tb/LaPO4(核/壳)纳米棒均具有Ce3+(5d-4f)和Tb3+5D4-7FJ(J=6-3)的特征发射。与CePO4:Tb纳米棒核相比,CePO4:Tb/LaPO4(核/壳)纳米棒的光谱强度及荧光寿命均有较大的提高,这是由于形成核/壳结构后发光中心镧系金属离子与表面淬灭中心的距离增大,减少了能量传递过程中非辐射复合的路径,使能量淬灭受到抑制。   采用简单、快速、无模板辅助的超声化学法合成了稀土氟化物,并对产物的形貌和粒径进行了有效的调控。通过应用不同氟源(KBF4、NaF和NH4F)选择性合成了具有不同形貌的CeF3纳米材料,如片状、棒状和颗粒状。对具有不同形貌的CeF3样品进行了UV-Vis吸收光谱和荧光光谱测试和比较。研究结果表明不同形貌的样品,它们的光学性质存在很大差异,这说明纳米材料的光学性质与其形貌、粒径、晶体结构等因素有密切的关系。得到的EuF3单晶纳米材料具有三维花状形貌。这些纳米花的外形为球状,平均直径为0.9μm-1.0μm,每个花瓣的厚度约为0.14μM。在其他实验条件不变的情况下,采用搅拌法而不经过超声辐射的对比实验只能得到二维纳米片,这表明超声辐射对花状EuF3的形成起到了至关重要的作用。基于不同反应时间的实验结果,我们提出了这种三维花状EuF3纳米材料可能的形成机理。   采用超声化学法选择性地合成了介孔及棒状CeVO4和纺锤状的YVO4:Eu3+纳米材料。CeVO4纳米棒的平均直径为5 nm,长度为150 nm。介孔CeVO4材料的比表面积较高(122 m2·g-1),孔径分布窄,其催化性能有望得到提高。纺锤状的YVo4:Eu3+纳米粒子具有四方相锆石结构,其直径为90-150 nm,长度为250-300nm。超声辐射对样品的形貌起着关键作用,在其他反应条件不变,未采用超声辐射的情况下只能得到团聚严重的纳米颗粒。荧光测试表明,纺锤状YVO4:Eu样品表现为Eu3+5D0-7FJ(J=1-4)的特征跃迁,以5D0-7F2电偶极跃迁(614nm)为最强峰,属于红光发射。
其他文献
非晶态金属-硼合金(MB,M=Fe,Co,Ni)自1950年代以来引起了人们的广泛关注并成功应用于石油化工等诸多领域。经过数十年的研究,人们对它已有了深入的认识,是目前发展较为成熟的催化
相较于体相块材,无机化合物半导体纳米晶具有更为丰富的电子性质及可加工性,使得其在提高太阳能电池效率、同时降低成本上被寄予厚望。   本文采用液-固-液(LSS)合成策略以
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
期刊
媒体近日曝出的重金属镉通过土壤污染大米事件,引起社会的广泛关注。我国多数人口以稻米为主食,那么我们应该购买什么样的稻米,如何才能吃得健康呢?我刊特别采访了农业与生物
针对基本粒子群优化算法(PSO)容易陷入局部最优点和收敛速度较慢的缺点,提出在PSO更新过程中加入两类基于正态分布投点的变异操作.一类变异用来增强局部搜索能力,另一类变异
本论文包括两部分内容:一,利用一个蝎形柔性羧酸配体5-(羧基甲氧基)间苯二甲酸(H3OABDC),通过水热法合成了六个具有新颖结构和性质的配位聚合物。二、以2-(2-吡啶基)苯并咪唑(2-
配位聚合物作为一种同时具备配合物和高分子特性的无机-有机杂化材料,被认为是兼具理论研究意义和广阔应用前景的新材料。微孔配位聚合物由于其结构上的特性而具有很大的潜在
细胞凋亡的检测一直都是细胞生物学和肿瘤生物学研究领域的一个重要方向,免疫分析在临床诊断和生化分析中广泛应用。传统的分析与检测手段因其操作复杂、试剂消耗量大、费时费
配位聚合物因其丰富迷人的拓扑结构及在光学、磁学、多孔、催化等方面具有潜在的应用而吸引了广大化学工作者对其进行深入细致的研究工作。然而,想准确预测配位聚合物的组成和
纳米材料是纳米科学与技术的基础,它在信息存储、光电装置、催化和传感器等许多领域发挥着越来越重要的作用,其制备与应用一直是科学工作者的研究热点。   碳化硅(SiC)是一
学位