论文部分内容阅读
基于TiO2纳米管的独特结构和优异性能,本文采用水热法制备了不同形貌的TiO2纳米管催化剂,并通过酸性红B废水的光催化降解实验考察了 TiO2纳米管在光催化氧化-膜分离耦合反应装置(简称耦合反应装置)中的应用性能。该耦合反应装置包括光催化反应区和膜分离区,且废水在光催化反应区底部曝气装置的曝气气流作用下通过连通管和循环管实现内循环流动。实验结果表明:酸性红B废水降解率随着其浓度和光催化反应区曝气量的增加均先增加后降低,且酸性条件更利于酸性红B的降解,适宜的废水浓度、光催化反应区曝气量和pH值分别为12mg/L、0.10m3/h和3。TiO2纳米管水热反应时间和锻烧温度分别从6 h增加到12 h、300℃增加到400℃时,废水的降解率增加;而分别从12h增加到24h、400℃增加到500℃时则呈现相反的变化规律。增大TiO2纳米管投加量有利于提高其悬浮浓度,但同时会导致TiO2纳米管的沉积现象,且适宜的投加量为0.8 g/L。气冲洗对TiO2纳米管悬浮浓度的影响主要发生在气冲洗结束后的2 min内,且膜分离区中TiO2纳米管悬浮浓度达到最高值所需时间比光催化反应区的短。膜底曝气量和气冲洗时间间隔的增加有利于减轻膜污染;膜污染随着水热反应时间的增加而增加,而随煅烧温度的增加先降低后增加。从保证较高光催化降解性能和最大程度减缓膜污染的原则出发,适宜的膜底曝气量、气冲洗时间间隔、T iO2纳米管催化剂制备的水热反应时间和煅烧温度分别为0.035 m3/h、30 min、12 h和400℃。耦合反应装置间歇式运行时的膜污染较连续式运行时的低,且长期运行时在线反冲洗可有效减缓膜污染,从而延长了膜的使用寿命。与负载型TiO2/MCM-41和商业TiO2催化剂相比,自制的TiO2纳米管具有更好的光催化降解性能,且对膜的污染程度与负载型TiO2/MCM-41的相近,而明显比商业TiO2的低。