论文部分内容阅读
本文考虑Hamilton-Jacobi方程H(x,P+Du)=λ的与有效Hamilton函数相关的一系列问题。
Lions,Papanicolaou和Varadhan首先证明了存在唯一的实数λ∈R使得Hamilton-Jacobi方程存在全局粘性解,记此唯一的与P有关的实数λ∈R为(-H)(P),称为有效Hamilton函数。
有效Hamilton函数有着十分明确的物理意义:它表征了量子本征态所对应的能量值。并且它在Hamilton-Jacobi方程的均匀化理论、解的长时间渐近行为等的研究中都起着非常重要的作用,与弱KAM理论、Aubry-Mather理论等也有着十分密切的联系。
第一章首先介绍这一方面研究进展,既包括理论上的推广,也包括数值计算和应用方面的进展。然后给出必要的预备知识。
第二章首先给出Lions,Papanicolaou和Varadhan等人的原始证明,然后给出一个新的关于有效Hamilton函数存在唯一性的几何方法的证明。这种方法不仅可以证明有效Hamilton函数的存在唯一性,而且由此出发还可以讨论有效Hamilton函数的一些性质以及建立它与Aubry-Mather理论的密切联系。
第三章将对有效Hamilton函数进行刻画。首先是它的一些等价表示,这是由有效Hamilton函数的存在唯一性的几何证明出发而得到的关于(-H)(P)的一些表达式,它们表征了有效Hamilton函数的一些极限特性。还有(-H)(P)的两个变分表示,它们是后面数值计算的理论基础。之后讨论了有效Hamilton函数的一些基本性质,它们反映了(-H)(P)的性质与Hamilton函数H的性质之间的密切关系。
第四章讨论有效Hamilton函数的计算问题。首先对于一些具体的Hamilton函数给出相应的有效Hamilton函数的解析表达式。由于一般而言只有对于特殊的Hamilton函数才能得到有效Hamilton函数的解析表达式,所以接下来讨论了相应的数值计算问题。数值计算的方法义分为两类:偏微分方程方法和变分方法,对每一类方法都进行了简单的分析讨论。
第五章给出有效Hamilton函数的一些应用。首先说明有效Hamilton函数的物理意义:它表征了本征态所对应的能量值,接着给出它在Hamilton-Jacobi方程的均匀化理论、解的长时间渐近行为等的研究中的应用,最后指出了有效Hamilton函数与弱KAM理论、Aubrry-Mather理论的密切联系。