【摘 要】
:
随着人工智能的兴旺,电子商务行业迎来了新的发展机遇。随着在线交易的频率和规模的增加,商家与客户之间的在线协商和沟通变得越来越频繁。因为它们无法实现谈判,也无法分析用户,因此难以针对特定用户更好地达成交易。在线交易谈判流程的自动化已逐渐成为商家和消费者的潜在需求。但是,现有的在线对话系统(例如淘宝上的阿里小蜜和京东的在线客户服务)无法很好地满足这样的需求。目前,一方面,自动谈判的研究者主要集中在计算
论文部分内容阅读
随着人工智能的兴旺,电子商务行业迎来了新的发展机遇。随着在线交易的频率和规模的增加,商家与客户之间的在线协商和沟通变得越来越频繁。因为它们无法实现谈判,也无法分析用户,因此难以针对特定用户更好地达成交易。在线交易谈判流程的自动化已逐渐成为商家和消费者的潜在需求。但是,现有的在线对话系统(例如淘宝上的阿里小蜜和京东的在线客户服务)无法很好地满足这样的需求。目前,一方面,自动谈判的研究者主要集中在计算机对计算机的谈判上,而对人机谈判的研究不多。另一方面,对话系统的研究人员很少关注自动谈判。因此,在本文中,我们将对话系统的体系结构与自动谈判集成在一起,研发了一个人机谈判系统。它可以代替人工客服来处理许多重复性和多样化的谈判。它可以随时随地与多方进行谈判,从而显着提高谈判效率,并减少企业使用人工客服的成本。具体来说,我们基于微信小程序平台,研发了一个基于强化学习的人机谈判系统。我们的系统能够应对不同的用户或同一用户的不同出价方式,并采用动态谈判策略,提高谈判的效率。本文的主要贡献如下:我们综述了对话系统和自动谈判系统领域中的最新技术,比较了它们的优点和缺点,并建议了进一步研究的方向;我们将强化学习与用户行为建模相结合,设计了一种新颖的谈判策略,这个策略让我们的谈判系统在谈判中可以根据用户的行为来调整谈判策略;我们编写了对话语料和谈判语料库,采用fastText算法训练识别人类意图的分类器,并且我们用基于特征词抽取的匹配算法来提取谈判对话中与价格相关的结构化信息;我们在微信小程序平台上实现人机谈判系统,该系统包括了分别从用户界面,对话理解,对话谈判管理和对话回应生成四个模块,并使用中文的自然语言与用户进行多轮谈判;我们进行了大量实验来分析我们的系统,通过分析意图识别模型的性能评估对话理解模块的性能,从系统谈判效率、对话成功率和公平性三个方面分析谈判策略的有效性,采用问卷调查的方式分析用户对系统的满意度。实验结果表明,我们研发的系统可以很准确地识别人类对手的意图,与人类对手进行谈判的效率、成功率以及公平性,大部分人类对手对我们的系统表示满意。本文设计和实现的人机谈判对话系统为研究对话系统和自动谈判的学者们提供了一个新的研究方向。
其他文献
随着各种网络社交平台的兴起,文本作为这些平台的主要信息载体,数据量每天都在高速增长,如何正确处理这些海量的文本信息,即,将文本分类管理和应用,已经成为一项重要研究课题。近年来,文本分类的深度学习方法获得快速发展,可以快速准确的对大规模文本数据进行处理,具有广阔的应用前景。因此,本论文瞄准文本分类的深度学习方法,在下面两个方面取得研究进展:(1)提出基于改进的Cluster GCN的文本分类方法。首
多相流现象对我们的生活生产具有重要的借鉴和指导意义,在能源的开发与储备、生命科学的研究与探索、材料的制备与应用等方面有着广阔的发展前景。其中多相流中液滴弹跳现象与我们的生活最为紧密,已经应用于我们的生活中,如打印、喷涂、自清洁等。液滴弹跳现象的研究在国内外已经取得了丰硕的成果,但仍然还有许多未被研究和深入探索的领域,特别是对液滴弹跳现象定量分析的研究相当少,加之液滴微尺度、瞬息变化快、易于变形等诸
随着移动拍照设备的广泛使用,每天连续产生大量的图像,传统的图像数据管理工作包括图像存储、处理和检索技术已经无法适应快速增长的数据所带来的压力。用户往往将大量图像数据外包到云服务器以减少本地存储成本,同时为了确保图像安全防止隐私泄露而选择在外包之前对图像数据进行加密。然而加密后的图像数据失去了明文特征和数据之间的关联性,影响用户对图像数据的管理,导致无法进行高效地图像检索。虽然可以事先构造加密索引并
图像检索是模式识别中极具挑战性的研究方向。其中特征提取和紧凑的特征描述是图像检索技术的重要组成部分。传统的图像检索技术主要由两部分组成:(1)基于文本的图像检索(TBIR);(2)基于内容的图像检索(CBIR)。TBIR技术存在局限性且难以精确描述图像内容,而CBIR虽然能够通过低层视觉特征传达图像信息,但在高层语义表达方面仍存在很多不足。近些年,卷积神经网络(CNN)在图像检索和图像分类等任务中
多相流不仅普遍存在于生活之中,在许多自然现象和工业生产中更有广泛应用。更好地了解和研究多相流的机理和性能,不仅能够帮助人们了解自然认识自然,在工业生产中创造更多的价值,而且在科学进步以及能源开采等方面有着重要的意义。表面润湿性作为多相流中的一个重要性质,用于表征液体在固体表面的延展能力,用接触角的大小来进行度量。接触角是在液体表面和固体表面之间的接触位置形成的特征角度,是很多工业应用和自然现象的基
癌症驱动模块对癌症精准医疗和个性化医疗的重要性,使癌症驱动模块识别问题成为生物信息学的研究热点。对该问题的研究方法主要分为两大类:一类是从头识别方法,另一类是基于先验知识的识别方法。本文主要利用第二类方法对识别问题进行研究,针对组学数据噪声多、不完整、单一组学数据信息有限等特征,通过蛋白质相互作用网络整合多组学数据信息以提高数据的完整性和准确性,提出基于网络模型的癌症驱动模块识别方法,主要工作如下
轨迹数据可以反映用户的兴趣和偏好,如果没有经过匿名化处理,这些私人数据是不能直接发布的。基于用户的轨迹数据,攻击者能够根据用户的部分位置进行时空关联推测出用户的其他敏感位置信息,导致用户隐私的泄露。目前,大多数轨迹数据发布中的隐私保护方法要么将所有的位置信息都视为敏感信息,要么只单从位置标签或访问频率进行敏感位置的区分,以提高数据的效用性。然而,不同的位置对于不同的用户而言,是具有不同敏感度的,如
近年来,随着我国经济的发展,无人机行业取得了蓬勃的发展。无人机在军事勘察、环境监测、应急指挥、农业生产等领域有着广泛的应用。在这些应用中,需要利用无人机拍摄图像或影像。当利用无人机拍摄图像时,受到飞行高度和相机焦距的限制,单幅图像往往无法覆盖整个目标区域。因此需要对无人机拍摄的多幅航拍图像进行拼接,来获取覆盖整个目标区域的图像。一直以来,图像拼接都是国内外研究的热点。完整的图像拼接包括图像获取、图
可满足性问题(SAT)是第一个被证明的NP-完全问题,在人工智能和计算机科学中占据着重要的位置,许多问题都可以转化为SAT问题进行求解。最近杨洋等人提出了一种新的基于局部搜索的扩展规则方法ERACC(Extension Rule Based on Accurate Configuration Checking),该方法突破了传统基于扩展规则方法对实例规模的局限。然而,ERACC在k-SAT(k&g
随着互联网技术的迅速发展,每天都有海量的数据产生,这大大提升了机器学习算法性能的同时,也让其遭受到了巨大的隐私威胁。机器学习的隐私保护已经成为当前的一个研究热点。集成学习作为机器学习的一个重要分支,被认为是人群智慧的机器学习解释,其主要思想是通过规则训练多个学习器,然后根据某种组合策略进行组合,最后以投票的方式输出最终结果。集成学习由其高精度和稳定等特点被广泛应用到数据挖掘、医疗诊断等多个领域。但