基于区块链的可验证的加密图像检索研究

来源 :广西师范大学 | 被引量 : 0次 | 上传用户:dt
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着移动拍照设备的广泛使用,每天连续产生大量的图像,传统的图像数据管理工作包括图像存储、处理和检索技术已经无法适应快速增长的数据所带来的压力。用户往往将大量图像数据外包到云服务器以减少本地存储成本,同时为了确保图像安全防止隐私泄露而选择在外包之前对图像数据进行加密。然而加密后的图像数据失去了明文特征和数据之间的关联性,影响用户对图像数据的管理,导致无法进行高效地图像检索。虽然可以事先构造加密索引并将其与加密图像一起存储到云服务器当中以保证图像的安全性和可用性,但是目前大多数加密图像检索方案没有足够地重视恶意云服务问题,它可能返回给用户错误或者不完整的检索结果。由于很难构造通用的认证结构对图像类型数据的相似度计算过程进行验证,所以对加密图像检索结果的验证面临很大的挑战。此外,检索结果为了更好地反映出用户真正的目标与兴趣点,如何缩小图像语义与其特征描述符之间的差距,更好地捕捉用户兴趣同样是一个值得研究的问题。
  本文主要研究的是解决加密图像检索过程中面临恶意云服务威胁的问题,同时提高图像相似性比较时的检索效率与精度。为了解决上述问题,本文的主要研究工作如下:
  (1)为解决恶意云服务器的威胁问题避免返回错误的或者不完整的检索结果,将这种需求诉诸于区块链技术,提出了一种基于区块链的可验证的加密图像检索服务方案,实现了搜索结果的可靠性与搜索过程的透明性。该方案将加密索引存储在区块链(以太坊)上,通过区块链的共识机制保证在智能合约上完成搜索的功能达到搜索结果的完备性,同时将相应的加密图像数据外包到云服务器以降低区块链上的存储成本,经过安全性分析和实验表明了方案的可靠性、较高的检索效率与精度,同时具有很好的隐私保护效果。
  (2)设计了一种利用视觉词袋模型和simhash的双层索引结构,第一层是基于视觉词袋模型的方法大概确定图像的分类减少后面simhash计算量,第二层是利用simhash进行相似图像检索,汉明距离作为判断图像之间的相似性指标,采用这种索引结构不仅可以精细化图像分类,而且还能在相似性比较时提高搜索效率与精度。
  (3)通过利用基于密文策略属性加密技术,允许数据所有者限制数据用户在指定的范围内搜索达到对数据用户细粒度访问授权目的。主要思想是,数据所有者根据设定的访问策略对搜索密钥以及分类后的图像数据集合进行加密,当且仅当数据用户的属性满足分类访问策略时,数据用户才能对同一视觉单词下的图像执行搜索,从而实现了对搜索权限的管理。
其他文献
视频哈希作为数字媒体内容安全领域的一个重要研究课题,近年来受到研究人员的广泛关注,现已成功应用于视频拷贝检测、视频认证、视频检索和视频篡改检测等方面。视频哈希算法可以从一个输入视频中提取出一串基于内容的、简短的数字或比特序列,该序列称为输入视频的视频哈希。在实际应用中,可以用视频哈希来代表视频本身,有效地降低视频的存储代价和视频相似计算的复杂度。通常,视频哈希算法应该满足两个基本属性,即鲁棒性和唯
学位
图像描述主要解决的问题是如何使用自然语言自动描述图像的内容,该研究主要涉及了计算机视觉和自然语言处理两个研究领域,是人工智能中一项重要的研究工作。随着数字图像的广泛使用和传播,其信息价值飞速增长,图像描述作为图像与自然语言的桥梁,具有广阔的应用前景。图像描述可广泛应用于图像检索、语义视觉搜索、多模态检索、对话机器人的视觉智能、视障辅助、军情侦察、智能监控等。  本论文研究细粒度图像描述方法,使计算
互联网不断地发展带来了海量的高维数据,其特点是维度众多,而其中许多维度价值密度相对较低。如何在众多维度中找到价值高的维度,是许多研究者研究的问题;而且由于数据的快速增长以及赋予数据类别标签的成本高昂,越来越多的数据没有标签。因此,特征选择、半监督学习成为研究的热点。此外,由于图模型可以模拟数据的流形结构,有很好的数据表达能力,因而结合特征选择、半监督以及图学习理论的基于图的半监督特征选择进入大家的
图结构数据,像交通运输网、地铁网络和社交网络等在现实世界中大量存在。因此,学习并理解图是机器学习中的关键。目前关于图的研究主要分为:图分类和节点分类。节点分类通过给定一个在某些节点上带有标签的网络,它将预测该网络上其他节点的标签,是网络挖掘中非常重要的任务。节点分类实际上是一个机器学习问题,它将机器学习中的分类模型应用到了网络中。节点分类本质是对已有的分类模型进行改进,使其获得更好的分类效果。图表
学位
针对传统的物联网集中式访问控制模型,这些模型一般建立在可信第三方之上。物联网存在单点故障和数据篡改等问题,容易造成隐私泄露。此外,物联网设备还受到电力、内存,计算能力等限制,这种建立在可信第三方之上的访问控制模型面临巨大的管理和维护成本。随着物联网设备的急剧增加,这种模型无法满足物联网节点随时加入或离开的动态性特点,使得越来越多的物联网设备存在管理效率低等问题。因此,物联网的安全和隐私问题一直是物
学位
区块链技术(Blockchain)因其特有的去中心化、去信任、无法篡改、可追溯等特点,可以实现无信任基础的多方建立可信的数据共享和点对点的价值传输,从而得到了学术界和工业界的广泛关注。在区块链中,所有完成的交易都需要进行数字签名后存储用来验证交易。因此,如何增强区块链的数字签名可扩展性成为了一个具有挑战性的问题。其中,区块链交易的数字签名的大小和验证签名的计算成本是限制签名可伸缩性的主要因素。多重
学位
电子商务的发展使得在线交易日益频繁,在线交易规模也日益扩大。消费者与商家的交互越来越多,不可避免地要进行在线谈判。传统的在线谈判方式是低效的人工谈判,人工谈判已经不能满足广大消费者日益增长的潜在需求。随着人工智能技术的发展,智能主体技术已日益成熟,使得电子商务领域的自动谈判成为了可能。智能主体能够随时与人类进行高效的谈判,节约了大量人工成本。因此,人机谈判吸引越来越多的学者的兴趣。目前有很多关于自
学位
当前,人们利用互联网进行信息传递日益频繁,图像、视频等多媒体数据被广泛于各种互联网应用,因此如何确保信息在传输过程中的安全已成为一个亟待解决的重要问题。初期阶段,研究人员使用加密技术将原始信息内容打乱成无实际意义的乱码,有效解决了信息的安全问题。随着云存储与大数据技术的兴起,越来越多的用户希望将数据传送到云端保存。由于对服务商的不信任,因此许多用户会对信息进行加密,然后再上传到云端,这导致云端出现
学位
随着各种网络社交平台的兴起,文本作为这些平台的主要信息载体,数据量每天都在高速增长,如何正确处理这些海量的文本信息,即,将文本分类管理和应用,已经成为一项重要研究课题。近年来,文本分类的深度学习方法获得快速发展,可以快速准确的对大规模文本数据进行处理,具有广阔的应用前景。因此,本论文瞄准文本分类的深度学习方法,在下面两个方面取得研究进展:(1)提出基于改进的Cluster GCN的文本分类方法。首
学位
多相流现象对我们的生活生产具有重要的借鉴和指导意义,在能源的开发与储备、生命科学的研究与探索、材料的制备与应用等方面有着广阔的发展前景。其中多相流中液滴弹跳现象与我们的生活最为紧密,已经应用于我们的生活中,如打印、喷涂、自清洁等。液滴弹跳现象的研究在国内外已经取得了丰硕的成果,但仍然还有许多未被研究和深入探索的领域,特别是对液滴弹跳现象定量分析的研究相当少,加之液滴微尺度、瞬息变化快、易于变形等诸
学位