论文部分内容阅读
物种多样性的海拔分布格局一直是生态学的热点研究问题,不仅因为山地生态系统具有较高的多样性,同时海拔梯度也提供了一个研究动植物对环境变化响应的完美平台。由于环境因子沿海拔梯度的变化规律与纬度梯度相似,因此科学家认为其多样性格局也应与纬度梯度相近。但许多研究结果表明两者存在很大不同:多样性海拔梯度的峰值往往出现在中海拔。虽然有关单峰型多样性格局存在有大量的研究和假说,但原因仍不清楚。本文研究结合植被调查、功能属性、系统发育多样性以及贝叶斯模型,旨在对草本植物多样性海拔格局进行描述和解释。 本文研究地位于北京东灵山地区,海拔1000到2300m,植被类型为辽东栎为主的阔叶林。利用样带调查法进行植被基础调查,记录乔木,灌木,草本植物的多度,盖度和种类,共调查142个样方。在海拔梯度上每隔25m设置3个1×1m的草本样方,调查样方内所有草本植物的叶片厚度,硬度,大小,绒毛密度,比叶重,单位面积的氮含量。利用Phylomatic数据库构建系统发育树,计算每个样方的系统发育多样性。在海拔尺度上每隔50 m设置一个土壤温度检测器,每隔15分钟记录一次数据。调查每个样方的土壤环境数据:土壤有效氮,土壤有效磷,土壤pH,土壤有机质,土壤含水量。分析结果如下: (1)草本物种多样性的海拔格局呈现单峰型,其最大值出现在1800m左右,灌木和乔木的多样性随着海拔的升高而降低,树线出现在1750m左右。温度因子(最低,最高温度,年均温)和山体面积表现出了显著的单峰型海拔格局,与生产力相关的潜在蒸发量随着海拔的升高逐渐降低,而土壤有效氮和有效磷随海拔的升高而升高。 (2)利用广义混合模型(GMM)研究上层木对草本群落的影响,结果表明上层木的盖度显著影响了草本群落的多度和高度,但对多样性的影响却随着海拔的变化而变化,即在低海拔地区促进了草本多样性在高海拔地区又起到了抑制作用。最高温度显著降低了草本多样性,但对草本高度和多度影响不显著。沿海拔梯度群落组成发生显著变化,低海拔地区耐旱种为优势物种,随着海拔升高其优势度逐渐降低。 (3)广义线性模型的结果显示对草本多样性影响最大的两个因子是极端温度,将样带分为两部分:底部样带(1000-1800m)与顶部样带(1800-2300m),结果表明不同样带的驱动因子有所不同:对于底部样带来说,多样性主要受到高温影响,而对于顶部样带,霜期的长短是其多样性的主要决定因素。对功能和系统发育多样性的分析也得到了同样的结果,基于比叶重和叶片大小的功能多样性受到了极端高温的影响,而基于绒毛密度和叶片厚度的功能多样性受到了霜期长短的影响。 (4)我们对物种分布模型(SDM)加以改进,考虑了不同海拔段物种面临的灭绝压力(温度升高时温度高海拔物种所面临的灭绝压力,温度下降时低海拔物种所面临的灭绝压力,扩散限制导致的灭绝压力)以及生态位进化,重新构建了一个结合生态与进化过程的模型,利用EPICM数据库的温度变化数据对物种沿海拔分布变化进行拟合,结果表明:物种在中海拔灭绝率显著低于高海拔或低海拔,原因是当温度升高时高海拔物种面临较高的灭绝压力,而温度降低时低海拔物种面临较高的生存压力。但这种中海拔优势受到物种进化率的影响,当进化速率较高时,物种的多样性格局只受初始迁移位置决定。 本研究利用功能属性和多样性,系统发育多样性和贝叶斯模型作为研究工具,旨在揭示草本多样性海拔格局的驱动因子,结论如下: (1)种间作用对草本多样性没有直接的影响,但是其显著改变了群落结构。 (2)极端温度是导致单峰型多样性海拔格局的主要原因。由于低海拔地区的温度较高,高海拔地区的温度较低,而中海拔地区有最适宜的温度和,所以拥有最多的物种。 (3)物种最初的移居位置并不一定是形成单峰型海拔多样性格局的主要原因,会受到物种灭绝率和进化速率的限制,当进化速率较高时,单峰型海拔格局主要取决于初试移居地。中海拔由于地理位置的特殊,可以在环境改变时向上或者向下移动,从而缓冲环境变化带来的影响。我们认为单峰型海拔多样性格局的原因并不是因为物种最先迁移到中海拔,而是因为中海拔物种的灭绝率最低。