基于卷积神经网络的医用低剂量DR图像去噪研究

来源 :东南大学 | 被引量 : 0次 | 上传用户:xxhaizi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
X射线数字化放射成像(DR,Digital Radiography)使得医生在无创条件下,能够初步掌握关于病人病情和病灶的基本信息,在众多疾病的医学临床检查和诊断中扮演着不可替代的重要角色。为了降低电离辐射可能带来的致癌风险,低剂量成像是目前临床应用的必然趋势。然而降低辐射剂量将引入大量噪声,导致成像结果严重退化。近年来,随着硬件技术的发展和深度学习理论日渐成熟,基于卷积神经网络的图像噪声抑制研究取得了显著的成果。本文通过构建多层非线性变换网络,对 DR 图像中的噪声特征进行拟合,从而在低剂量条件下提升其成像质量,本课题研究内容主要分为以下三个部分:
  首先,估算了低剂量 DR 图像中的噪声模型。理论上DR 图像在采集过程中受到高斯噪声,泊松噪声及乘性噪声的影响。通过多幅真实环境中采集的低剂量 DR 图像进行噪声分析与曲线拟合,发现其噪声特征在灰度值极低时主要表现为高斯噪声和泊松噪声,在灰度值相对较高时主要表现为乘性噪声。而在对数域中,噪声大小总是限定在较小的范围内,因此可以近似看作加性高斯噪声。
  其次,基于深度可分离卷积和多尺度残差的思想,设计了端到端的网络模型 MRDNet。该模型通过渐进迭代的使用密集连接块估算了多尺度的残差信息,并进行残差特征融合,增强了模型对残差估计的容错能力,以及对噪声特征的学习能力。实验表明,模型在复杂度较低的情况下,能够在NIH模拟数据集上有效抑制噪声并保持图像细节,相比于现有方法得到了一定的性能提升。此外,对于真实放射成像数据的噪声抑制结果验证了本文对噪声模型的合理假设。
  最后,基于图像块复杂度对数据集进行划分,并利用集成策略构建了模型 ED-RDNet。由于 DR 图像中灰度和复杂度分布很不均匀:一方面图像块之间复杂度差异较大,模型拟合困难;另一方面,不同复杂度的图像块数量差距较大,影响训练模型的偏好。因此,本文基于分治策略,将图像块依据其复杂度进行聚类,使用每个子类别的归一化结果分别训练子网络模型RDNet1…K,子模型基于残差密集连接块与深度可分离卷积构建;对子模型的噪声抑制结果进行加权,最终得到集成网络ED-RDNet。实验表明,相对于现有先进方法,ED-RDNet通过集成策略超越了单一网络的性能表现,在NIH模拟数据集上实现了较为明显的性能提升;而对于真实低剂量 DR 体模数据与低剂量 CT 投影数据的噪声抑制效果展示了集成模型较强的泛化能力,证明了其实用价值。
其他文献
面向服务的架构(Service-Oriented Architecture,缩写SOA)由于其应用程序接口独立、资源可共享和重用的特点得到广泛的利用,解决了传统应用架构应用程序难以管理、系统依赖特殊环境的问题。服务集成框架是适用于实时分布式应用领域的 SOA 实现方案,由于缺乏服务组合机制,系统中大量已有可用服务难以被有效复用。而现有的服务组合机制难以直接应用在同时支持发布订阅和请求应答两种通信方
随着X射线计算机断层成像(X-ray Computed Tomography,CT)在现代医学中的应用越来越广泛,CT 检查中潜在的辐射风险也引起了广泛的关注,过量的辐射容易诱发白血病以及癌症等疾病,因此,降低CT扫描过程中的辐射剂量刻不容缓。但是降低CT扫描过程中的辐射剂量会导致重建后的CT 图像中的信噪比降低,CT 图像中存在着严重的噪声和伪影,进而影响医生的诊断。为了提高在低扫描剂量下CT图
当今,网络数据作为一种广泛使用的数据载体,正逐渐成为人们认知并抽象世界的一种方式之一。网络中除了节点和边的信息外,往往还包括丰富的节点属性,蕴含巨大的价值。网络表示学习,是一种旨在将网络数据中的节点表示成低维、稠密且是实值向量表示形式的新颖的表示学习方法,学习到的向量表示将会用于各类下游任务如节点分类和链路预测中以提升性能。然而现有的深度网络表示学习方法由于忽略了嵌入表示的分布容易陷入过拟合问题,
协同众包是指需要多人共同合作完成复杂任务的众包。由于工人需要相互协作才能完成任务,因此工人之间的协同代价是影响团队合作效率和质量的重要因素。与以往团队形成问题中基于社会网络通信成本计算协同代价模型不同的是,本文基于工人对互相之间协同情况的反馈计算工人之间的协同代价。所以,本文首先基于工人反馈研究复杂任务被分解后的协同众包团队形成问题,然后在该研究的基础上,本文针对工人的不诚实性和工人的信誉因素对问
学位
图像超分辨率技术是指通过软件算法来提高图像的空间分辨率并恢复更高频率的细节信息,从而获得更丰富的图像内容。如今,图像超分辨率技术在视频处理领域获得了更多的关注,视频超分辨率成为研究热点。得益于硬件成本低、部署难度小等优势,视频超分辨率技术可以嵌入在录制、传输、播放、应用等各个阶段,对于提高成像质量、降低传输带宽、改善视觉体验、优化智能应用等方面均可起到突出作用,具有极高的应用价值。本文主要关注视频
学位
近年来,实值神经网络(Real Neural Network,Real NN)在学术界和工业界受到广泛关注,网络的构造、推广及其合理的解释是当前人工智能应用基础理论研究的重要研究内容。作为深度学习的经典学习模型,实值卷积神经网络(Real Convolutional Neural Network,Real CNN)在语音识别、图像处理、医学辅助诊断等领域均取得了显著成果,但是它的网络结构中通常不考
近些年来各行各业高速发展,对人才的选择日趋重要,人才选择最重要的是人才评估。尽管当前招聘形式种类多样,但人才评估依赖于学历证明的情况并没有发生改变,这导致学历造假现象层出不穷。此外,各大企业招聘人才需大量笔试、面试,导致招聘效率低下,且应试型考试能够考前突击,从而取得很好成绩,并不能真实评估人才水平。基于学习经历大数据(以下简称学历数据)生成学生画像,进而实现客观人才评估的方法,近年来受到了很大关
学位
近年来,随着智能设备的普及,移动应用得到迅速的发展。这些应用往往依赖于基于位置的服务,通过使用用户的坐标位置或者语义/逻辑位置为用户提供个性化服务内容。基于位置服务的应用对用户位置信息的访问带来了严重的隐私隐患,为了使用户在获得基于位置服务的同时保障其隐私不受侵犯,研究者们针对位置隐私定义以及隐私与功能之间的最优化权衡展开了研究。  现有的隐私定义主要基于信息论和差分隐私这两个概念,且主要针对用户
学位
随着网络信息技术的不断发展,互联网已经成为国民经济和社会发展的重要基础设施,各类业务与应用对网络基础设施的可扩展性和健壮性要求达到了新的高度。IETF提出的新一代网络管理协议 NETCONF,以及用于描述网络配置和状态数据的 YANG 模型,可以降低人工运维成本,使网络运维趋于自动化。  然而由于业务现实等因素,各家厂商和标准化组织构建的YANG模型存在异构性,不同来源的YANG模型在语义上难以统
学位
近年来,传统数据中心网络的性能已经无法满足分布式应用日益增长的网络需求,新型的低延迟数据中心网络应运而生。低延迟数据中心网络的核心技术是RDMA,即远程直接内存访问技术。RDMA本质上是将协议栈卸载到硬件中,实现了内核旁路技术,避免了传统网络中数据从用户态到内核态的拷贝开销,同时省去了内核处理的开销,为数据中心分布式应用提供了低延时和高带宽的性能优势。RDMA 与数据中心应用的结合使得传统的基于T
学位