基于深度学习的图像超分辨率研究

来源 :东南大学 | 被引量 : 0次 | 上传用户:kjasdg
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
图像超分辨率技术是指通过软件算法来提高图像的空间分辨率并恢复更高频率的细节信息,从而获得更丰富的图像内容。如今,图像超分辨率技术在视频处理领域获得了更多的关注,视频超分辨率成为研究热点。得益于硬件成本低、部署难度小等优势,视频超分辨率技术可以嵌入在录制、传输、播放、应用等各个阶段,对于提高成像质量、降低传输带宽、改善视觉体验、优化智能应用等方面均可起到突出作用,具有极高的应用价值。本文主要关注视频超分辨率算法的研究。
  现阶段,深度学习技术在视频超分辨率问题上受到了广泛关注与发展。根据处理时域信息方式的不同,主要可分为多帧网络和循环网络。多帧网络按照自回归模型从相邻的多帧输入图像来获取时域信息,由于输入图像帧数的限制和独立的计算过程而难以保持较高的帧间一致性。循环网络则通过时域的循环处理来逐步获取时域信息,初始阶段受到循环处理次数的限制而导致超分辨率质量较差。针对上述问题,本文分别对多帧网络和循环网络进行了改进,并集成多帧网络和循环网络设计了一种高鲁棒性视频超分辨率方法,保持了更好的帧间一致性。主要工作包括:
  (1)针对多帧网络模型,首先通过可变形卷积结合非局部网络改进了图像配准模块,提高了图像配准的精度,接着通过渐进融合结构的时空注意力机制改进了特征融合模块,提高了时空特征融合的效果。综合上述模块设计了一种基于非局部可变形卷积的视频超分辨率网络模型,取得了更好的超分辨率效果。
  (2)针对循环网络模型,首先通过改进信息流循环方式,将像素域的图像处理结果与特征域的时空特征图相结合进行信息循环,提高了对时域特征的表达能力并降低了误差传播的影响。然后结合图像配准模块、特征融合模块等结构,提高了对空间特征的表达能力和时空特征的综合能力。设计了一种基于像素域结合特征域信息循环的视频超分辨率网络模型,降低了误差传播的影响从而取得了更好的超分辨率效果。
  (3)集成上述改进的多帧网络模型与循环网络模型,设计了一种鲁棒的视频超分辨率方法。通过集成多帧网络与循环网络,使得网络整体对时空特征的表达能力得到进一步提高,有助于恢复更多的高频细节内容。同时充分发挥了各个子网络的优点,既增强了帧间结构一致性又提高了初始阶段超分辨率图像的质量。
  通过对实验结果的对比分析验证了本文所设计的视频超分辨率方法的有效性,在主观视觉效果和客观评价质量上均取得了一定提升;通过网络结构消融实验的对比分析,进一步验证了本文所改进的网络模块与网络集成方法的有效性。
其他文献
磁共振成像因其具有无创、较高的软组织对比度等特点,广泛用于脑科学研究和临床脑疾病诊断,脑部磁共振图像的分割可辅助医生诊断病情。纵向弛豫时间T1是磁共振成像组织的固有属性,组织特性T1映射图不仅反映了成像组织的生理学或病理生理学特征,还提供了原始脑部磁共振图像不具有的组织特征。本文主要研究的是融合组织特性的脑部磁共振图像分割方法,研究内容如下:  (1)基于自旋回波—反转恢复序列以及反转时间,计算并
在光伏功率预测分析的过程中,由于光伏板受外界因素影响,输出功率会产生变动,从而威胁到电网的安全。本文针对光伏功率影响因素和算法的创新应用展开研究。实验主要完成以下工作以及研究:  (1)SVM算法是本实验运用机器学习预测光伏输出功率中所选择的经典算法。研究使用GBDT算法和SVM算法组合的方式对光伏功率输出进行短期预测。由于得到的电站数据包含多组因素,使用GBDT算法对数据中的因素进行重要性分析,
学位
步态特征是一种新型的生物特征,与其它的生物特征,如人脸、指纹等相比,其最突出的优势在于非接触性和远距离适用性。在当今高科技越来越发达的时代,步态识别在智能视频监控和身份识别领域都有着重要的实用价值。在传统步态识别方法中,因为步态模型的参数通常是根据人的先知经验选取的,识别率的高低受步态建模的影响较大,另一方面,外界因素如大衣外套、背包携带物等对模型的训练也会产生较大的影响。针对以上问题,本文分别开
学位
深度神经网络的训练任务通常具备计算和存储密集的特性,往往需要依赖于 GPU集群中大量 GPU 计算以及显存资源,并通过分布式训练以提升训练效率。传统分布式训练中数据并行的方式因参数同步存在巨大通信开销,而模型并行则由于计算依赖性导致 GPU 利用率较低,均影响了分布式训练的效率。为此,最新的流水线分布式训练在模型并行基础上,通过分时注入训练数据的方式显著增加 GPU 利用率。然而,在现有的GPU集
学位
随着数据共享的不断深入,对描述数据产生与演化原理的世系工作流(Provenance Workflow)进行共享发布的需求日益迫切,世系工作流在追踪历史信息、数据恢复、数据来源引用等方面有重要应用价值,直接对世系工作流进行共享发布存在泄露工作流隐私风险,世系工作流共享发布中的隐私保护问题已成为研究者关注的热点。针对现有世系工作流模块隐私与结构隐私保护方法存在的不足,提出维持溯源查询可用的隐私保护世系
学位
我国的心血管疾病死亡率居各病因之首,占居民疾病死亡构成的40%以上,心律失常是心血管疾病中重要的一组疾病,标准的12导联心电信号是诊断心律失常的重要工具,基于心电信号的心律失常自动检测对预防和治疗心血管疾病有重要意义。虽然12导联心电图信号比单导联心电图提供了更全面的心律失常信息,然而不同导联之间的信息很难有效融合,因此,基于12导联心电开发一种具有较高准确性和较强泛化能力的的心律失常自动检测算法
学位
面向服务的架构(Service-Oriented Architecture,缩写SOA)由于其应用程序接口独立、资源可共享和重用的特点得到广泛的利用,解决了传统应用架构应用程序难以管理、系统依赖特殊环境的问题。服务集成框架是适用于实时分布式应用领域的 SOA 实现方案,由于缺乏服务组合机制,系统中大量已有可用服务难以被有效复用。而现有的服务组合机制难以直接应用在同时支持发布订阅和请求应答两种通信方
随着X射线计算机断层成像(X-ray Computed Tomography,CT)在现代医学中的应用越来越广泛,CT 检查中潜在的辐射风险也引起了广泛的关注,过量的辐射容易诱发白血病以及癌症等疾病,因此,降低CT扫描过程中的辐射剂量刻不容缓。但是降低CT扫描过程中的辐射剂量会导致重建后的CT 图像中的信噪比降低,CT 图像中存在着严重的噪声和伪影,进而影响医生的诊断。为了提高在低扫描剂量下CT图
当今,网络数据作为一种广泛使用的数据载体,正逐渐成为人们认知并抽象世界的一种方式之一。网络中除了节点和边的信息外,往往还包括丰富的节点属性,蕴含巨大的价值。网络表示学习,是一种旨在将网络数据中的节点表示成低维、稠密且是实值向量表示形式的新颖的表示学习方法,学习到的向量表示将会用于各类下游任务如节点分类和链路预测中以提升性能。然而现有的深度网络表示学习方法由于忽略了嵌入表示的分布容易陷入过拟合问题,
协同众包是指需要多人共同合作完成复杂任务的众包。由于工人需要相互协作才能完成任务,因此工人之间的协同代价是影响团队合作效率和质量的重要因素。与以往团队形成问题中基于社会网络通信成本计算协同代价模型不同的是,本文基于工人对互相之间协同情况的反馈计算工人之间的协同代价。所以,本文首先基于工人反馈研究复杂任务被分解后的协同众包团队形成问题,然后在该研究的基础上,本文针对工人的不诚实性和工人的信誉因素对问
学位