【摘 要】
:
由于其高度的可调节性,光格子中的冷原子气体为模拟和研究凝聚态系统中的多体哈密顿量,尤其是低维强关联系统提供了一个完美的平台。同时,由于这一系统自身许多独特的特点,其
【出 处】
:
中国科学院研究生院 中国科学院大学
论文部分内容阅读
由于其高度的可调节性,光格子中的冷原子气体为模拟和研究凝聚态系统中的多体哈密顿量,尤其是低维强关联系统提供了一个完美的平台。同时,由于这一系统自身许多独特的特点,其中会涌现出许多不同于凝聚态物理的崭新的问题和现象,探索和研究这些新问题为传统的强关联领域带来了新的机遇和挑战。
在本文中,我们主要关注一些光格子冷原子气体中涌现出的不同于凝聚态的新奇的多体系统,如高自旋,高轨道,和非平衡的强关联系统。运用解析和数值方法,我们集中研究了这些系统中出现的新的多体哈密顿量,奇异的量子相和相变,非平庸的量子多体动力学行为等等。我们相信,对于这类新问题的研究有助于拓展我们对于传统强关联领域以及冷原子领域的认识,并且为这些领域的发展提供新的思路。
其他文献
冷原子体系的可控性、可调性使其具有传统凝聚态体系所不具有的优势。超低温、短程且可调的相互作用,维度的可调性使得冷原子体系逐渐成为凝聚态物理研究中的又一个热点。
金属表面等离子体波具有沿金属/电介质界面传播,且沿垂直于该界面方向急剧衰减的特性。由于它具有很强的光场局域特性,可以广泛应用于波导器件及光子回路的构建。随着微纳加
介绍了整层大气透过率相关的理论与整层大气透过率测量仪。对Langley-plot定标方法进行了描述。在原有整层大气透过率仪基础上,对测量总控软件进行了改进,使测量实现自动化;为
高温超导是20世纪最伟大的发现之一,其独特的性质,预示了广阔的应用前景。高温超导机理的研究大大地推动了凝聚态物理的发展。高温超导研究是集样品生长、仪器研制,实验与理
光动力治疗已经发展成为一种新的治疗癌症的方法,过去的三十年中,光动力治疗在基础研究和临床治疗方面有了不同程度的进展。针对不同类型的肿瘤许多国家已经批准了将光动力治疗
在纳米结构中,自旋极化的电流导致的自旋转矩是当前自旋电子学的研究的热门课题。对于实验中的隧道节和磁畴结构的体系,要求我们采用全量子的方法来解决。所以,我们发展了一
材料作为人类社会生存和发展的必需,对推动科学技术的发展至关重要,特别是随着工业化步伐的不断加快,半导体材料的研发及应用受到更广泛的关注。但是对于一种新材料的研究及开发
随着煤、石油等常规能源逐步接近耗尽以及环境压力的增加,世界上许多国家都在努力探索新能源的开发和利用,这使新能源开发成为二十一世纪世界经济发展中最具决定力的五大技术领域之一。在新能源中,光伏发电是一个重要方面。如何提高太阳电池的光电转换效率一直是国际上一个重要课题。随着科技的飞速发展,新型纳米材料在各个领域逐渐显示出非凡前景,特别是在新能源方面的研究上,基于纳米结构的太阳电池可能将成为解决能源短缺的
稀土离子掺杂发光玻璃陶瓷在光通讯、白光LED照明、固态三维显示、太阳能电池等方面具有重要的应用前景。玻璃陶瓷的发光性能主要取决于晶相基质和显微结构,为了获得透明性好