论文部分内容阅读
随着我国水利枢纽建设的蓬勃发展,一大批高坝或超高坝投入运行或开始筹建,这些工程的共同特点是“水头高、流量大、泄洪功率大、河谷狭窄、地质条件复杂”,这使得泄洪诱发的振动问题非常突出。传统的研究主要考虑水工结构自身的振动安全,随着越来越多的大型水利水电枢纽投入运行,高坝泄洪诱发的地基和周边场地振动及其环境影响逐渐引起了工程界的重视。
高坝泄流诱发结构和场地振动属于同一个不可分割的物理过程,即在水流荷载激励下,水工结构首先发生振动,然后振动经由地基传递至周边场地。在“水流荷载-水工结构-地基-周边场地”的耦合动力体系中,水流荷载激励下的水工结构振动是地基和场地振动的直接振源,而影响工业生产、居民人身安全和日常生活的场地振动则是上述耦合体系的动力响应。
本文主要从高坝泄洪诱发的结构和场地振动两个方面入手,对其振动机理和减振措施进行了研究。首先归纳整理了国内外对于泄洪诱发结构和场地振动的研究进展,其次针对结构和场地振动分别涉及到的振动和波动问题介绍了目前常用的理论分析和模型试验方法。然后,重点研究了高坝泄流诱发非经典阻尼水工结构的振动特性及减振措施,高坝泄洪诱发坝体附属结构的“伴生”振动机理,基于乌东德拱坝水弹性模型试验提出了减振调度优化运行方案,并进行了高坝泄流诱发场地振动的结构放大特性与减振研究。取得以下研究成果:
(1)高坝泄流诱发结构振动响应特性及减振研究。以多点激励结构动力方程为基础,由于阻尼矩阵的非正交性,利用复模态分解方法对动力方程进行解耦,然后在考虑耦合阻尼项的条件下,重新推导了传统的复多点反应谱方法(CMSRS)。改进的 CMSRS 方法对于不同空间位置荷载激励和不同结构响应模态之间相互影响的考虑更加全面,能够更加准确地计算具有复杂阻尼条件的水工结构动力响应,进而利用所提出的方法研究了耦合阻尼器的减振效果。
(2)高坝泄洪诱发坝体附属结构的“伴生”振动机理研究。首先基于原型观测数据分析了泄洪过程中锦屏拱坝闸门振动随开度增加而减小的特殊现象。基于传统的被动吸振器理论和相关结构的干/湿模态数值分析,考虑更加复杂的荷载和阻尼条件,并将研究对象由传统的主体结构转化为附属结构,提出了一种简化的理论模型以分析主体结构上附属结构的动力响应。分析表明锦屏表孔闸门振动是由中孔闸门振动而产生的伴生振动,并解释了表孔闸门振动随开度增加而减小的原因。
(3)高坝泄流诱发场地振动特性及调控减振研究。根据水力学及结构动力学相似条件,依据乌东德拱坝及水垫塘实际体型,设计并建造了水弹性模型,基于模型试验结果研究了表中孔敞泄和表孔局开泄洪的调度方式对水垫塘底部基岩和边坡振动的影响。综合试验结果,针对不同坝身泄流量范围,提出了泄流运行减振优化调度方案。
(4)高坝泄流诱发场地振动的结构放大特性与减振研究。首先理论分析了场地振动的窄频带特点,并根据实测数据对理论分析进行了验证。然后应用基础隔振衰减结构的动力响应,由于场地振动的窄频带特点,不必考虑低频共振问题,有利于简化隔振器的设计。同时考虑隔振体系的非线性性质,通过改进的概率分析方法,对其进行了动力响应分析,并利用数值模型验证了所提出的改进方法。
总之,高坝泄洪诱发的水工结构和地基场地振动是同一物理过程的不同阶段,地基和场地振动总是以水工结构振动为直接振源,对于场地振动的产生机理和减振方法的研究离不开对结构振动的深入分析,无论对水工结构还是周边场地进行振动衰减,都可以有效地衰减甚至避免不利的环境振动。本文所研究的水工结构和场地振动机理和减振措施,可以为泄洪振动问题的进一步研究和减振方法的合理选择提供参考和依据,具有较强的现实意义。
高坝泄流诱发结构和场地振动属于同一个不可分割的物理过程,即在水流荷载激励下,水工结构首先发生振动,然后振动经由地基传递至周边场地。在“水流荷载-水工结构-地基-周边场地”的耦合动力体系中,水流荷载激励下的水工结构振动是地基和场地振动的直接振源,而影响工业生产、居民人身安全和日常生活的场地振动则是上述耦合体系的动力响应。
本文主要从高坝泄洪诱发的结构和场地振动两个方面入手,对其振动机理和减振措施进行了研究。首先归纳整理了国内外对于泄洪诱发结构和场地振动的研究进展,其次针对结构和场地振动分别涉及到的振动和波动问题介绍了目前常用的理论分析和模型试验方法。然后,重点研究了高坝泄流诱发非经典阻尼水工结构的振动特性及减振措施,高坝泄洪诱发坝体附属结构的“伴生”振动机理,基于乌东德拱坝水弹性模型试验提出了减振调度优化运行方案,并进行了高坝泄流诱发场地振动的结构放大特性与减振研究。取得以下研究成果:
(1)高坝泄流诱发结构振动响应特性及减振研究。以多点激励结构动力方程为基础,由于阻尼矩阵的非正交性,利用复模态分解方法对动力方程进行解耦,然后在考虑耦合阻尼项的条件下,重新推导了传统的复多点反应谱方法(CMSRS)。改进的 CMSRS 方法对于不同空间位置荷载激励和不同结构响应模态之间相互影响的考虑更加全面,能够更加准确地计算具有复杂阻尼条件的水工结构动力响应,进而利用所提出的方法研究了耦合阻尼器的减振效果。
(2)高坝泄洪诱发坝体附属结构的“伴生”振动机理研究。首先基于原型观测数据分析了泄洪过程中锦屏拱坝闸门振动随开度增加而减小的特殊现象。基于传统的被动吸振器理论和相关结构的干/湿模态数值分析,考虑更加复杂的荷载和阻尼条件,并将研究对象由传统的主体结构转化为附属结构,提出了一种简化的理论模型以分析主体结构上附属结构的动力响应。分析表明锦屏表孔闸门振动是由中孔闸门振动而产生的伴生振动,并解释了表孔闸门振动随开度增加而减小的原因。
(3)高坝泄流诱发场地振动特性及调控减振研究。根据水力学及结构动力学相似条件,依据乌东德拱坝及水垫塘实际体型,设计并建造了水弹性模型,基于模型试验结果研究了表中孔敞泄和表孔局开泄洪的调度方式对水垫塘底部基岩和边坡振动的影响。综合试验结果,针对不同坝身泄流量范围,提出了泄流运行减振优化调度方案。
(4)高坝泄流诱发场地振动的结构放大特性与减振研究。首先理论分析了场地振动的窄频带特点,并根据实测数据对理论分析进行了验证。然后应用基础隔振衰减结构的动力响应,由于场地振动的窄频带特点,不必考虑低频共振问题,有利于简化隔振器的设计。同时考虑隔振体系的非线性性质,通过改进的概率分析方法,对其进行了动力响应分析,并利用数值模型验证了所提出的改进方法。
总之,高坝泄洪诱发的水工结构和地基场地振动是同一物理过程的不同阶段,地基和场地振动总是以水工结构振动为直接振源,对于场地振动的产生机理和减振方法的研究离不开对结构振动的深入分析,无论对水工结构还是周边场地进行振动衰减,都可以有效地衰减甚至避免不利的环境振动。本文所研究的水工结构和场地振动机理和减振措施,可以为泄洪振动问题的进一步研究和减振方法的合理选择提供参考和依据,具有较强的现实意义。