论文部分内容阅读
本文研究了银纳米微粒的制备,微粒尺度和浓度与吸收光谱,共振瑞利散射(RRS)光谱特征及强度的关系,并用共振瑞利散射技术研究了银纳米微粒与多种阳离子染料的相互作用,其中包括碱性三苯甲烷类染料,碱性吩嗪染料,碱性吩噻嗪,碱性呫吨染料等。此外还用RRS技术研究了银纳米微粒与蛋白质和某些抗生素的反应。考察了它们的光谱特征、影响因素、化学特性及分析应用的可能性,初步建立了快速、简便的测定银纳米、蛋白质和药物的新方法。一、纳米微粒的尺度和浓度与吸收光谱、共振瑞利散射光谱关系的研究 通过控制反应的温度和时间,可用硝酸银柠檬酸钠还原法制备出不同粒径和颜色的液相银纳米微粒。用透射电子显微镜(TEM)测量了银纳米微粒的平均粒径。银纳米微粒具有特定的吸收光谱,其吸收峰随银纳米微粒粒径增大逐渐红移。与此同时将产生明显的共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS),其最大散射峰λRRS、λSOS、λFDS分别位于470nm、940nm和470nm。当银浓度一定时,散射强度IRRS、ISOS和IFDS分别与银纳米微粒的粒径成直线关系;而当银纳米微粒的粒径一定时,A及IRRS、Isos和IFDS又与银的浓度成正比。因此,吸收光谱和RRS、SOS、FDS光谱可以作为研究银纳米微粒尺度和浓度的有用手段。 银纳米微粒与碱性染料、蛋白质、药物等相互作用的共振瑞利散射方法研究及其应用 二、银纳米微粒与碱性三苯甲烷染料相互作用共振瑞利散射光谱研究 研究发现,当一定粒径的银纳米微粒在 pH 2.dsZ.6的酸性介质中与结晶紫、 甲基紫、乙基紫、甲基绿、碘绿等三氨基三苯甲烷染料反应形成结合产物时会使 nS显著增强,并产生新的RRS光谱,但银纳米微粒与孔雀石绿、亮绿等H氨基 三苯甲烷染料的作用不明显。40m银纳米微粒的IAgAIV/I叱最大,故实验用粒径 为 40urn;同时银·结晶紫体系也产生明显的倍频散射qDS)和二级散射(SOS人 其中以RRS最灵敏,对银的检出限达1二~1.3ttg/thL。这种对银纳米进行化学修 饰的方法为银纳米的研究和检测提供一种灵敏、简便的方法。吸收光谱可以观测 到银纳米微粒对碱性三苯甲烷染料体系的增色效应。研究了反应的适宜条件。并 初步探讨了在相同条件下,20gb银检测水中痕量结晶紫染料的可能性,方法 有很高的灵敏度,但干扰物质较多,尚需进一步提高选择性,或进行必要的预分 离,才能用于实际。文中还对RRS增强的原因做了初步的探讨。 三、银纳米微粒与碱性吩噎染料相互作用的共振瑞利散射光谱研究 当40urn的银纳米微粒在pH=2.4-2石范围内与酚藏花红仅X中性红(NR) 等碱性吩嚎染料作用形成结合产物时会使RRS强度大大增强,并产生新的RRS 光谱。同时也产生明显的倍频散射(FDS)和 H级散射(SOS),其中以 RRS最 灵敏。ngs、FDS和SOS的增强与银浓度成正比,当用RRS测定银时,其对 银的检出限分别达0.snghL和0.6n咖L。吸收光谱显示出了银纳米微粒对酚藏 花红和中性红吸收光谱的有关变化。大量银纳米微粒Q0#g/thL)与 PC和 NR 作用,分别在580urn和370urn处产生较宽波峰。共振瑞利散射强度在 0.05叶卜g/m L的范围内与PC和NR浓度成正比。方法具有较高的灵敏度,对PC 和NR的检出限(为。-3时)32n咖L和3刀n咖L,但干扰物质较多,尚需进 一步提高选择性,或进行必要的预分离,才能用于实际。 四、银纳米微粒与碱性吩唆噎染料相互作用的共振瑞利散射光谱研究 扬要 一 粒径在40 urn以下的银纳米微粒产生的RRS强度很弱,但当40urn的银纳米 微粒在pH==2.4-2石范围内与天青A等碱性吩噎咦染料作用形成结合产物时,会 使RRS强度大大增强,并产生新的nS光谱。同时也产生明显的倍频散射吓DS) 和二级散射3OS),其中以 RRS最灵敏。RRS、FDS和 SOS的增强与银浓度 成正比,当用 RRS测定银时,其对银的检测限分别达1.lug/inL。吸收光谱显示 出了银纳米微粒对天青A的吸收光谱的有关变化。文中还研究了反应的适宜条 件。 五、银纳米微粒与碱性咕吨染料相互作用的共振瑞利散射光谱研究 采用硝酸银柠檬酸钠还原法制备出不同粒径和颜色的银纳米微粒,它们有不 同程度的共振瑞利散射(RR S人但强度较弱。以40n银纳米微粒为例,本文 研究发现,在酸性介质中,它与罗丹明 B(RB)反应形成结合产物时,会使 RRS 大大增强,并产生新的MS光谱。最大散射峰为5 80urn处的共振荧光峰。在 470urn处还出现一个大的共振瑞利散射峰,在 0刀54.7pg/ffiL范围内银纳米微粒