【摘 要】
:
土木基础设施是体现国家综合国力及科学技术发展水平的重要标志,其安全服役关乎国计民生。结构检测评估和结构健康监测是当前桥梁结构管养进行决策的主要依据,不管是结构检测评估还是结构健康监测,都会产生大量的数据,传统的数据分析手段难以对检、监测数据进行高效的分析处理。如何快速的分析海量数据、挖掘数据深层特征以及将分析结果反馈应用到后续桥梁运维管理中,成为土木领域当下研究的前沿热点。基于此研究背景,本文从结
【基金项目】
:
国家重点研发项目(2018YFC0705601); 国家自然科学基金(51778134);
论文部分内容阅读
土木基础设施是体现国家综合国力及科学技术发展水平的重要标志,其安全服役关乎国计民生。结构检测评估和结构健康监测是当前桥梁结构管养进行决策的主要依据,不管是结构检测评估还是结构健康监测,都会产生大量的数据,传统的数据分析手段难以对检、监测数据进行高效的分析处理。如何快速的分析海量数据、挖掘数据深层特征以及将分析结果反馈应用到后续桥梁运维管理中,成为土木领域当下研究的前沿热点。基于此研究背景,本文从结构外观检测数据和结构健康监测数据两方面出发,以数据挖掘中的分类问题为重点,利用深度学习技术深入挖掘大量外观检测数据和健康监测数据的内在特征。在依托海量检测数据的研究方面,本文主要研究了基于检测图像的裂缝自动分割方法,分为三个阶段逐步深入。在依托海量健康监测数据的研究方面,本文侧重于研究大数据问题处理框架中的前两个阶段,即数据预处理和数据存储阶段。论文的主要创新点如下:(1)提出了基于深度学习和Zernike正交矩的裂缝分割及宽度测量方法。针对传统方法适用性差的缺点,将深度学习算法和传统的基于数字图像处理的算法结合起来,在深度学习定性分类能力的基础上将图像中裂缝的检测分为“判断有无”、“自动勾画”和“宽度测量”三个层次。采用多个尺度的深度学习缩小裂缝的范围,并在传统方法初步分割出裂缝的基础上,再次利用深度学习筛选初步分割的裂缝,从而大大提高了裂缝分割的精度以及复杂环境下的抗噪性。在宽度测量方面,针对传统的“数像素”方法对于5像素以内细微裂缝测量误差大的缺点,提出了基于Zernike正交矩的细微裂缝宽度测量方法,直接利用裂缝的灰度信息计算裂缝的宽度,提高图像中细微裂缝的宽度测量精度。(2)提出了基于多尺度特征融合网络的像素级裂缝分割方法,实现完全依靠深度学习本身提取特征的裂缝分割。提出框架可以分为特征提取和特征融合两大块,而特征融合又可以分为不同尺度特征简单的像素级融合和不同尺度特征不同维度之间的深层次融合。在特征提取和像素级融合方面,采用自下而上和自上而下两种策略设计了不同的特征融合网络,基于不同裂缝测试集详细分析了高、低阶特征对最终裂缝分割结果的影响。发现低阶特征主要表征裂缝的形态信息,对于裂缝的细节描述更加有效,而高阶特征对于图像中裂缝的语义特征描述更加有效,需要把高低阶特征同时考虑到裂缝分割的框架中。(3)基于对抗深度学习增强的轻量级裂缝检测网络。前两章提出的裂缝分割方法虽然能高精度的分割出裂缝,但是其检测效率并不能够满足自动化检测的实时性要求。因此,本章提出了一种轻量级的裂缝检测框架,并提出了基于对抗深度学习的轻量级网络增强算法。提出框架从两方面对网络进行优化,一方面是深度学习特征提取模块的优化,采取更加轻型、高效的框架;另一方面,针对网络的训练策略提出算法创新,引入了生成对抗距离来衡量相似性,使轻量级网络的输出分布和人工标记的分布相逼近,从而提高轻量级网络的检测效果。最后,将本章提出的算法应用到新华路桥的桥墩裂缝检测中。(4)针对海量监测数据预处理的自动化异常检测需求,提出了基于一维卷积网络的健康监测异常数据识别方法,可以将健康监测系统采集数据直接输入到网络中,利用深度学习挖掘异常数据的本质特征,实现对异常数据的自动识别。随后将提出的方法应用到了江阴大桥吊杆监测数据的异常识别中,与人工检测的结果相对比,发现提出方法可以高精度的识别出健康监测系统采集的异常数据。相比传统的基于数学模型的异常数据识别方法,本文提出方法适用性广泛,可以高精度检测出各种类型的异常数据。相比于基于长短记忆网络的异常识别算法,提出方法不需要人工设定阈值。而相比于基于图像识别的异常检测方法,提出的方法不需要小心调整观测数据的尺度,不需要担心图像中超高维压缩带来的异常信息损失。(5)针对海量监测数据存储的问题,提出了基于卷积自编码网络的长期监测数据压缩方法。提出数据压缩方法可以分为数据压缩网络和数据重建网络两个部分,其中数据压缩网络用于将输入的原始数据压缩到指定的大小,数据数据重建网络用于将压缩后的数据进行还原。本文将提出方法和传统的基于DCT变换的数据压缩方法及压缩感知方法进行对比,发现在较低的压缩率下,本章提出的方法相对传统方法具有更小的重建误差和更高的相关系数。并将提出方法在江阴大桥长期吊杆监测数据下进行验证,发现对于识别为异常的数据,其压缩后重建的精度较低,而对于识别为正常的数据,能够在较低的压缩率下实现高精度的数据重建。
其他文献
图像去噪是图像信号处理中一个基础且重要的研究领域。每次信号处理方法的突破,都给图像去噪技术的发展提供了一次新契机,使去噪图像质量提高至一个新水平。本文尝试将近年来提出的图信号处理中的一些方法应用于图像去噪,具体来说,即通过图滤波方法进行图像去噪。文中从图滤波实用化、自适应图滤波和子空间图滤波等方面对基于图滤波的图像去噪展开研究,并逐步提升图像去噪质量,使之达到与现有基于模型学习和深度学习的图像去噪
在数据传输需求快速增长以及射频频谱资源日益紧张的背景下,可见光通信(VLC,Visible Light Communication)受到广泛地关注。可见光通信将数据调制到380nm-780nm的可见光频段上,在满足日常照明的同时,提供高速数据接入服务。与传统的射频(RF,Radio Frequency)通信相比,可见光通信具有速率较高、无电磁辐射、保密性好、成本低等优点。可见光通信通常利用日常照明
外泌体(exosome)是细胞分泌的一种胞外囊泡,其尺寸范围在40-160 nm,具有脂质双层膜结构。外泌体广泛存在于生物体液中,构成外泌体的主要成分为蛋白质、核酸、脂质、代谢物和胞质等。作为细胞间一种新的通讯模式,外泌体在免疫应答、信号传导、抗原呈递等过程中起着关键作用,同时在疾病诊断以及药物靶向输送方面也有广阔的应用前景。肿瘤细胞外泌体携带着的蛋白质、RNA等与肿瘤密切相关的信息,是一种重要的
2019年商用的第五代移动通信(5G,5th Generation Mobile Communication Systems)系统通过大规模多输入多输出(MIMO,Multiple Input Multiple Output)、毫米波通信、以及超密集组网实现空口增强、频谱扩展、以及网络密集化。但是随着5G商用系统的初步部署,主要核心使能技术的优缺点也日益显著,移动通信面临发展模式、架构、以及安全等
急性冠脉事件严重危害人们生命安全,动脉粥样硬化斑块突然破裂是其中的主要诱因。影像诊断学已经成为医学不可分割的重要组成部分,尤其是心脏病学介入影像技术,已成为临床诊疗的重要手段。光学相干断层成像(OCT)技术是目前空间分辨率最高的腔内介入影像学技术,可以提供高清晰的血管腔横断面图像。目前,基于OCT成像技术的临床诊断主要依赖心内科医生在OCT成像完成后,多次重复性回顾以及手工测量血管管腔的狭窄程度、
大型铁路综合客运枢纽作为综合运输体系的重要组成部分,是各种运输方式及城市交通间实现高效衔接和一体化换乘的主要环节,是提高客运效率的关键和提升服务质量的核心。准确评估大型铁路综合客运枢纽规划选址、方案设计、运营管理各阶段的合理性,对于充分发挥枢纽在内外交通以及城市内部交通中的转换作用,塑造良好的城市公共空间,优化城市交通结构,进而带动枢纽周边地区乃至整个城市的发展,具有非常重要的理论意义与实用价值。
生物分析被广泛用于血液、尿液、唾液、泪液及组织提取物中的药物、代谢物、以及各种生物标志物的定量检测,是监测人类健康和研究生命科学的有力手段。表面增强拉曼散射(SERS)因其能提供被测物质丰富的“指纹”信息且检测速度快、灵敏度高,成为一种重要生物分析手段。SERS的实现依赖于SERS基底的构建。然而,受限于目前SERS基底的制备方法以及对所用基底材料的选择,所制备出的SERS基底使用场景受限,特别是
桥梁作为基础设施的重要组成部分,其健康状况直接关系到社会公共安全。在当前的人工智能时代背景下如何利用前沿技术来为桥梁的监测、运营与维护服务,成为研究人员关注的热点。本文以计算机视觉技术为基础并结合深度学习算法,针对当前基于视频图像的桥梁车流信息识别及防船撞预警方法中存在的问题进行研究。在桥梁车流信息识别中现有方法存在识别目标信息单一,鲁棒性不强等问题。针对上述问题,本文提出基于图像实例分割的车辆全
非合作水声通信信号的截获与辨识是水声通信信号处理领域的研究热点之一。论文针对无先验信息条件下,即非合作条件下的信号截获、特征与参数提取以及通信信号模式判决等技术进行了研究。本文的主要研究内容和贡献如下:(1)针对常规能量检测方法没有充分利用水声通信信号特点使得信号处理增益较低的问题,本文利用水声通信信号的循环平稳特性以及循环平稳分析良好的抗噪声性能,引入了基于循环平稳的信号检测方法。同时在传统循环
心血管疾病严重威胁着人类健康,其发生的主要原因是动脉血管出现粥样硬化。作为治疗动脉粥样硬化的常用手段,血管支架植入术虽然具有疗效快和术后并发症少等优点,但血管支架植入后易发生支架内再狭窄。支架内再狭窄的发生不仅和植入支架的结构有关,也和支架植入后血管内生物力学微环境的变化密切相关。本文基于有限元和计算流体力学数值分析方法,研究了不同斑块形态和组分对血管支架植入后支架-斑块-血管间相互作用的效应,同