论文部分内容阅读
金属有机盐(Metal-Organic Salts,MOSs)是金属络合阴离子通过二次球形配位相互作用与带正电荷的有机配体形成的一种杂化材料。由于其拓扑结构具有多样性,所以已经在金属离子识别与分离、气体吸附、非线性光学材料、荧光探针、磁性开关等领域得到深入的研究和广泛的应用。配合物作为无机化学的重要研究内容已经渗透到现代化学的各个方面,得到了人们的广泛关注和深入研究。然而,金属有机盐及其相应配合物在固态条件下的反应性并没有引起人们的关注,相应研究也较少。由此,本论文设计并合成了四种不同含氮有机配体L1—L4,并利用其与金属氯化物制备了一系列金属有机盐(二次球形配位化合物)及相应配合物,将这些新型的化合物作为机械化学和固态反应的研究对象,开展了以下工作:(1)利用机械球磨法合成配体1,3-双(2-吡啶基甲基)咪唑氯盐(L1),并利用配体L1在固态条件制备了金属有机盐1—3和配合物(或配位聚合物)4—6,并表征了其单晶结构。通过机械研磨、固-气吸附、X-射线粉末衍射(PXRD)研究了两者在固态条件下的可逆转化条件,即金属有机盐1—3分别与叔丁醇钾(Potassium Tert-Butoxide,KTB)按照摩尔比为1:2进行研磨,可以将金属有机盐中的HCl脱去,得到配合物4—6。而将配合物分别置于盐酸环境中吸附HCl后,HCl分子嵌入到配位键并使其断裂,得到相应的金属有机盐,实现了金属有机盐与配合物间的固态可逆转化。该工作揭示了固态条件下氢键与配位键的相互转化规律,为配合物的合成提供了一个独特的方法。(2)利用手性配体(1R,2R)-N,N′-二苄基-1,2-环己二胺(L2)制备了配合物7,8和金属有机盐9,10。通过BET比表面积分析、PXRD、1H NMR、TGA等研究了无孔配合物7,8“双分子”固-气吸附反应机理,即将它们置于密闭的盐酸/甲醇环境中,两种气体分子以相互协作的方式被无孔配合物吸附,一方面配合物吸附HCl气体发生化学反应,使得Cu-N配位键发生断裂,另一方面甲醇分子发生物理吸附嵌入结构之中,生成以N-H···Cl氢键为主导的同一种金属有机盐9。核磁测试证明除甲醇外,乙醇分子也可以替代甲醇进入到晶体结构中,得到含乙醇的金属有机盐10。此外,金属有机盐9与强碱KOH进行研磨反应,可以将HCl从金属有机盐9中脱去得到双核配合物8,充分体现了机械化学的选择性。由密度泛函理论(DFT)计算说明金属有机盐9与配合物7,8的能量大小和相对稳定性。(3)利用多齿配体(1R,2R)-N,N′-双(吡啶-3-亚甲基)环己烷-1,2-二胺(L3)获得了金属有机盐11,12以及配合物13,并对其单晶结构进行了表征。通过BET比表面积分析、PXRD、TGA、DSC研究了多质子化配体铜(II)化合物在一次和二次球配位之间的固态反应性。在空气中,晶体11吸收空气中的水与中心金属Cu(II)配位继而转变为新的含有水的金属有机盐12。金属有机盐12可以在加热条件下脱去水分子可逆地转变为11。在反应过程中,Cl-从外球迁移到中心金属Cu(II)取代一次配位中的水分子,发生配体交换反应。利用机械化学,金属有机盐12可以与KOH按照1:4摩尔比进行反应,将HCl脱去形成中性五元环一次配位化合物(配合物)13。其可逆过程13→12(一次配位到二次配位)可以通过对HCl和H2O的化学吸附来实现。通过量子力学(QM)计算了相关晶体的相对稳定性,并对放热反应[Cu Cl4]2-+H2O→[Cu Cl3H2O]-+Cl-等实验结果进行了简单合理的能量解释。(4)设计合成了手性四齿配体(1R,2R)-N,N′-双(吡啶-4-亚甲基)环己烷-1,2-二胺(L4)并制备了其质子化配体L4’。利用机械化学,通过控制研磨底物的化学计量比为1:1和1:2制备了两种金属Cu(II)盐14和15,并用PXRD、固态荧光光谱和Raman光谱动态监测了14和15之间的定量可逆转化过程。量子力学(QM)计算说明了14和15的相对稳定性,表明了可逆转变的驱动力。此外,通过溶液法还制备了两种金属铜盐16和17作为固态反应的前驱物。通过PXRD动态监测了16的固-气反应过程,并在分子水平上揭示了其反应机理。当金属有机盐16暴露于HCl环境时可以吸附HCl和水分子生成金属有机盐14和15的混合物。对金属有机盐晶体17的化学计量控制的固态反应进行了研究,即17与等摩尔的Cu Cl2·2H2O研磨反应可以精确的获得15。探究了18的固态合成方法并且简单研究了其在吸附方面的应用。综上所述,本论文通过制备金属有机盐1—3,9—12,14—17和相应配合物4—6,7,8,13,18作为研究对象,研究了金属有机盐与相应配合物的合成方法、结构、性质以及固态可逆转化关系,探讨了含有不同配体的化合物的固态反应性,阐明了固态反应的能量变化因素,拓宽了绿色合成配合物的途径。相信随着人们对固态反应的关注逐渐提高,最终会实现绿色化学的目的。