论文部分内容阅读
原子力显微镜(Atomic forcemicroscope: AFM)具有超高观测分辨率和操作可控性,可实现原子、分子尺度上的观测和纳米尺度的加工制造。分子自组装是一项具有高效和快速的合成技术。将AFM操作功能与分子自组装相结合,利用AFM操作的精确性和分子自组装的快速性可以形成高效率、结构化的纳米制造新技术,这对推动纳米科学技术发展,探索发展新型纳米器件和系统制造技术都具有重要意义。 本论文以生物材料(DNA)的纳米组装为研究背景,针对AFM操作与分子自组装相结合的新型纳米制造技术面临的需求与挑战,开展了相应理论方法和实验研究工作。主要研究工作如下: (1)系统研究分析了AFM轻敲模式操作的理论方法,重点研究分析了操作振幅对操作结果成功与否的影响,和步长与步间距对操作后样本位置和形态的影响,建立了参数调控的操作控制方法,完成了具有速度、方向、振幅、轨迹等调控参数的探针操作可编程实现方法。 (2)针对生物DNA材料的易损坏、易粘附等操作难题,开展了探针轻敲模式操作的运动学和力学状态分析研究。基于点质量模型建立了AFM轻敲模式下悬臂梁的振动模型,并运用SIMULINK仿真方法,进行了探针振幅等参量对敲击作用力的影响分析研究;建立了操作过程中探针与样本间的作用力模型,分析了样本向前移动的充分条件;基于运动分解方法,通过分析针尖与样本间不同相对位置的力学关系建立了操作振幅模型,研究了操作振幅与样本物理特性的关系;基于大变形、大位移梁的弯曲变形,利用几何非线性有限元法建立了步长与步间距模型,分析了样本形变与操作力的关系。 (3)开展了液态环境下轻敲模式的CNT和DNA等纳米材料操作实验研究,分析了步长与步距和振幅等调控参量对纳米材料操作的影响,进行了方法验证,实现了对DNA束整体平移的操作。 (4)针对纳米物体力学特性存在的难于检测问题,通过研究不同振幅扫描作用力差异及相应检测高度差异性,结合接触力作用模型,提出了一种可计算微纳观物体杨氏模量的新方法;通过运用该作用力模型的逆运算,也可以计算出物体无外力作用时的真实形貌高度。实验研究验证了该方法的有效性。 本论文的研究工作为柔性纳米材料的探针操作提供了一定理论分析,为新型纳米器件或系统的装配和制造提供了相关技术支持。